scholarly journals A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e32009 ◽  
Author(s):  
Qinghua Liu ◽  
Yu Zhang ◽  
Haiping Mao ◽  
Wei Chen ◽  
Ning Luo ◽  
...  
Renal Failure ◽  
2015 ◽  
Vol 38 (2) ◽  
pp. 282-289 ◽  
Author(s):  
Yoshiyuki Morishita ◽  
Susumu Ookawara ◽  
Ichiro Hirahara ◽  
Shigeaki Muto ◽  
Daisuke Nagata

2021 ◽  
Author(s):  
Jungang Dong ◽  
Zhongbo Zhu ◽  
Guoning Cui ◽  
Zhixuan Zhang ◽  
Juan Yue ◽  
...  

Epithelial-mesenchymal transition (EMT) plays an important role in peritoneal metastasis of Gastric cancer (GC). Tumor exosomes can mediate tumor directed metastasis, and TGF-β1 is an important factor in inducing tumor Epithelial mesenchymal transition. However, it is not clear whether GC derived exosomes can induce peritoneal mesothelial cells through the TGF-β1/ Smads pathway and the effect of injured peritoneal mesothelial cells on the biological characteristics of GC cells. In this study, we demonstrated that GC-derived exosomes can activate the TGF-β1/Smads pathway in peritoneal mesothelial cells and induce the corresponding EMT process, and that the injured peritoneal mesothelial cells can improve the migration and adhesion of GC cells. Taken together, these data further support the critical role of exosomes in the remodeling of the pre-metastatic microenvironment.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109628 ◽  
Author(s):  
Tae Ik Chang ◽  
Hye-Young Kang ◽  
Kyung Sik Kim ◽  
Sun Ha Lee ◽  
Bo Young Nam ◽  
...  

Author(s):  
Hong Liu ◽  
Ning Zhang ◽  
Da Tian

AbstractEpithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Zhang ◽  
Hao Zhang ◽  
Xun Zhou ◽  
Wen-bin Tang ◽  
Li Xiao ◽  
...  

Background. microRNA (miRNA, miR) are thought to interact with multiple mRNAs which are involved in the EMT process. But the role of miRNAs in peritoneal fibrosis has remained unknown.Objective. To determine if miRNA589 regulates the EMT induced by TGFβ1 in human peritoneal mesothelial cell line (HMrSV5 cells).Methods. 1. Level of miR589 was detected in both human peritoneal mesothelial cells (HPMCs) isolated from continuous ambulatory peritoneal dialysis (CAPD) patients’ effluent and HMrSV5 cells treated with or without TGFβ1. 2. HMrSV5 cells were divided into three groups: control group, TGFβ1 group, and pre-miR-589+TGFβ1 group. The level of miRNA589 was determined by realtime PCR. The expressions of ZO-1, vimentin, and E-cadherin in HPMCs were detected, respectively.Results. Decreased level of miRNA589 was obtained in either HPMCs of long-term CAPD patients or HMrSV5 cells treated with TGFβ1. In vitro, TGFβ1 led to upregulation of vimentin and downregulation of ZO-1 as well as E-cadherin in HMrSV5 cells, which suggested EMT, was induced. The changes were accompanied with notably decreased level of miRNA589 in HMrSV5 cells treated with TGFβ1. Overexpression of miRNA589 by transfection with pre-miRNA589 partially reversed these EMT changes.Conclusion. miRNA589 mediates TGFβ1 induced EMT in human peritoneal mesothelial cells.


Sign in / Sign up

Export Citation Format

Share Document