scholarly journals MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats

Author(s):  
Hong Liu ◽  
Ning Zhang ◽  
Da Tian

AbstractEpithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Zhang ◽  
Hao Zhang ◽  
Xun Zhou ◽  
Wen-bin Tang ◽  
Li Xiao ◽  
...  

Background. microRNA (miRNA, miR) are thought to interact with multiple mRNAs which are involved in the EMT process. But the role of miRNAs in peritoneal fibrosis has remained unknown.Objective. To determine if miRNA589 regulates the EMT induced by TGFβ1 in human peritoneal mesothelial cell line (HMrSV5 cells).Methods. 1. Level of miR589 was detected in both human peritoneal mesothelial cells (HPMCs) isolated from continuous ambulatory peritoneal dialysis (CAPD) patients’ effluent and HMrSV5 cells treated with or without TGFβ1. 2. HMrSV5 cells were divided into three groups: control group, TGFβ1 group, and pre-miR-589+TGFβ1 group. The level of miRNA589 was determined by realtime PCR. The expressions of ZO-1, vimentin, and E-cadherin in HPMCs were detected, respectively.Results. Decreased level of miRNA589 was obtained in either HPMCs of long-term CAPD patients or HMrSV5 cells treated with TGFβ1. In vitro, TGFβ1 led to upregulation of vimentin and downregulation of ZO-1 as well as E-cadherin in HMrSV5 cells, which suggested EMT, was induced. The changes were accompanied with notably decreased level of miRNA589 in HMrSV5 cells treated with TGFβ1. Overexpression of miRNA589 by transfection with pre-miRNA589 partially reversed these EMT changes.Conclusion. miRNA589 mediates TGFβ1 induced EMT in human peritoneal mesothelial cells.


2018 ◽  
Vol 314 (6) ◽  
pp. F1087-F1095 ◽  
Author(s):  
Runsheng Guo ◽  
Guojun Hao ◽  
Yi Bao ◽  
Jun Xiao ◽  
Xiaojiang Zhan ◽  
...  

Although epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells was recognized as the key process of peritoneal fibrosis, which is a major cause of peritoneal failure related to peritoneal dialysis (PD), mechanisms underlying these processes remain largely unknown. In this study, we found that miR-200a was significantly downregulated in peritoneal tissues with fibrosis in a rat model of PD. In vitro, transforming growth factor (TGF)-β1-induced EMT, identified by de novo expression of α-smooth muscle actin and a loss of E-cadherin in human peritoneal mesothelial cells (HPMCs), was associated with downregulation of miR-200a but upregulation of zinc finger E-box-binding homeobox 1/2 (ZEB1/2), suggesting a close link between miR-200a and ZEB1/2 in TGF-β1-induced EMT. It was further demonstrated that miR-200a was able to bind to the 3′UTR of ZEB1/2, and overexpression of miR-200a blocked TGF-β1-induced upregulation of ZEB1/2 and, therefore, inhibited EMT and collagen expression. In contrast, overexpression ZEB1/2 blocked miR-200a inhibition of EMT and collagen expression in HMPCs. In conclusion, miR-200a could negatively regulate TGF-β1-induced EMT by targeting ZEB1/2 in peritoneal mesothelial cells. Blockade of EMT in HPMCS indicates the therapeutic potential of miR-200a as a treatment for peritoneal fibrosis associated with PD.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ying Xie ◽  
Yuanyuan Ruan ◽  
Huimei Zou ◽  
Yixin Wang ◽  
Xin Wu ◽  
...  

<b><i>Objective:</i></b> The goal of the present study was to determine the expression of yes-associated protein 1 (YAP1) in renal tissues of mice with lupus nephritis (LN) and elucidate its role in the progression of renal fibrosis. <b><i>Methods:</i></b> C57BL/6 mice and MRL/lpr mice were selected for experimental comparison. Mouse kidney tissues were removed and sectioned for hematoxylin and eosin staining, Masson’s trichome staining, Sirius staining, and immunohistochemistry. The mRNA and protein levels of YAP1 in mouse kidney tissues were detected, and the correlation between YAP1 and fibronectin (FN) mRNA levels was analyzed. Mouse renal epithelial cells were used for in vitro experiments. After transfection and stimulation, the cells were divided into 4 groups, namely the C57BL/6 serum group (group 1), the MRL/lpr serum group (group 2), the MRL/lpr serum + siRNA-negative control group (group 3), and the MRL/lpr serum + siRNA-YAP1 group (group 4). Epithelial-mesenchymal transition (EMT) markers in each group were detected by Western blotting and immunofluorescence staining. Serum creatinine, blood urea nitrogen, and urinary protein levels were detected and assessed for their correlation with YAP1 mRNA levels by Spearman’s analysis. <b><i>Results:</i></b> Compared to C57BL/6 mice, MRL/lpr mice exhibited obvious changes in fibrosis in renal tissues. In addition, YAP1 expression was significantly higher in the renal tissues of MRL/lpr mice than in those of C57BL/6 mice, and YAP1 mRNA levels were positively correlated with those of FN. YAP1 silencing in lupus serum-stimulated cells could effectively relieve serum-induced EMT. Finally, we observed that YAP1 mRNA levels in mouse kidney tissue were significantly and positively correlated with the degree of renal function injury. <b><i>Conclusion:</i></b> YAP1 expression in the kidney tissues of LN mice was higher than that observed in normal mice, indicating that YAP1 may play an important role in the occurrence and development of LN.


2005 ◽  
Vol 25 (1) ◽  
pp. 8-11 ◽  
Author(s):  
An S. De Vriese

Several conditions in the peritoneal membrane of peritoneal dialysis (PD) patients promote the accumulation of advanced glycation end-products (AGEs), that is, the uremic state, exposure to high glucose concentrations, and exposure to glucose degradation products (GDPs). AGEs exert some of their biologic actions through binding with a cell surface receptor, termed RAGE. Interaction of AGEs with RAGE induces sustained cellular activation, including the production of the fibrogenic growth factor, transforming growth factor-beta (TGF-β). TGF-β is pivotal in the process of epithelial-to-mesenchymal transition, through which cells of epithelial origin acquire myofibroblastic characteristics. Myofibroblasts are involved in virtually all conditions of pathological fibrosis. Submesothelial fibrosis is an important feature in peritoneal biopsies of PD patients, especially of those with clinical problems. We therefore examined the role of RAGE in peritoneal fibrosis, in an animal model of uremia, of high glucose exposure, and of peritoneal dialysate exposure. All three models were characterized by accumulation of AGEs, upregulation of RAGE, and fibrosis. Antagonism of RAGE prevented the upregulation of TGF-β and fibrosis in the peritoneal membrane. We further examined the underlying mechanism of peritoneal fibrosis in the uremic model. Prominent myofibroblast transdifferentiation of mesothelial cells was identified by co-localization of cytokeratin and α-smooth muscle actin in submesothelial and interstitial fibrotic tissue. Antagonism of RAGE prevented conversion of mesothelial cells to myofibroblasts in uremia. In conclusion, we hypothesize that accumulation of AGEs in the peritoneal membrane, as a consequence of the uremic environment, chronic exposure to high glucose, and exposure to GDPs, results in an increased expression of RAGE. The interaction of AGEs with RAGE induces peritoneal fibrosis by virtue of upregulation of TGF-β and subsequent conversion of mesothelial cells into myofibroblasts.


2000 ◽  
Vol 20 (5_suppl) ◽  
pp. 19-22 ◽  
Author(s):  
Achim Jörres ◽  
Thorsten O. Bender ◽  
Janusz Witowski

Conventional heat-sterilized, glucose-based peritoneal dialysis (PD) fluids contain significant amounts of glucose degradation products (GDPs) such as aldehydes and dicarbonyl compounds (glyoxal, methylglyoxal). These GDPs have been shown to impair cell functions in various in vitro experimental models. In peritoneal mesothelial cells, GDPs dose-dependently inhibit cell proliferation and mediator synthesis. In addition, some GDPs potently promote generation of advanced glycation end-products (AGEs). Immunohistochemistry finds AGEs in the peritoneal membrane of chronic continuous ambulatory peritoneal dialysis (CAPD) patients, suggesting that peritoneal AGE accumulation may be involved in chronic peritoneal fibrosis. The formation of GDPs might be prevented by filter-sterilization of PD fluids. Another option is to separate the glucose and the buffer system in dual-chambered or multi-chambered containers. In these systems, the glucose is kept in a separate compartment at high concentration and very low pH—both conditions being known to minimize the degree of glucose decomposition during autoclaving. Initial experimental evidence suggests that these novel, multi-chambered fluids significantly improve in vitro biocompatibility; however, the clinical relevance of these results remains to be established in clinical trials.


Renal Failure ◽  
2015 ◽  
Vol 38 (2) ◽  
pp. 282-289 ◽  
Author(s):  
Yoshiyuki Morishita ◽  
Susumu Ookawara ◽  
Ichiro Hirahara ◽  
Shigeaki Muto ◽  
Daisuke Nagata

Sign in / Sign up

Export Citation Format

Share Document