scholarly journals miRNA589 Regulates Epithelial-Mesenchymal Transition in Human Peritoneal Mesothelial Cells

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Zhang ◽  
Hao Zhang ◽  
Xun Zhou ◽  
Wen-bin Tang ◽  
Li Xiao ◽  
...  

Background. microRNA (miRNA, miR) are thought to interact with multiple mRNAs which are involved in the EMT process. But the role of miRNAs in peritoneal fibrosis has remained unknown.Objective. To determine if miRNA589 regulates the EMT induced by TGFβ1 in human peritoneal mesothelial cell line (HMrSV5 cells).Methods. 1. Level of miR589 was detected in both human peritoneal mesothelial cells (HPMCs) isolated from continuous ambulatory peritoneal dialysis (CAPD) patients’ effluent and HMrSV5 cells treated with or without TGFβ1. 2. HMrSV5 cells were divided into three groups: control group, TGFβ1 group, and pre-miR-589+TGFβ1 group. The level of miRNA589 was determined by realtime PCR. The expressions of ZO-1, vimentin, and E-cadherin in HPMCs were detected, respectively.Results. Decreased level of miRNA589 was obtained in either HPMCs of long-term CAPD patients or HMrSV5 cells treated with TGFβ1. In vitro, TGFβ1 led to upregulation of vimentin and downregulation of ZO-1 as well as E-cadherin in HMrSV5 cells, which suggested EMT, was induced. The changes were accompanied with notably decreased level of miRNA589 in HMrSV5 cells treated with TGFβ1. Overexpression of miRNA589 by transfection with pre-miRNA589 partially reversed these EMT changes.Conclusion. miRNA589 mediates TGFβ1 induced EMT in human peritoneal mesothelial cells.

Author(s):  
Hong Liu ◽  
Ning Zhang ◽  
Da Tian

AbstractEpithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.


2011 ◽  
Vol 31 (4) ◽  
pp. 477-485 ◽  
Author(s):  
Youhei Yamaguchi ◽  
Tatsuya Ishigaki ◽  
Koushi Sano ◽  
Kei-Ichi Miyamoto ◽  
Shinsuke Nomura ◽  
...  

BackgroundIn long-term peritoneal dialysis, myofibroblast-like cells found in the interstitium of the peritoneum are assumed to be a transformed type of mesothelial cell—epithelial-mesenchymal transition-positive [EMT(+)] human peritoneal mesothelial cells (HPMCs)—because they express a mesothelial marker, cytokeratin. However, no direct evidence about how these cells are able to invade from the mesothelium has yet been obtained.AimIn this study, we aimed to verify whether EMT(+) HPMCs would, in vitro, invade three-dimensionally along certain chemotactic factors.MethodsWe used reverse-transcriptase polymerase chain reaction to measure expression of Snail, E-cadherin, α5-integrin, and matrix metalloproteinase 2 (MMP2) messenger RNA (mRNA) in HPMCs exposed to 10 ng/mL transforming growth factor β1 (TGFβ1) and how that expression corresponds to cell motility, as represented by a video movie. We used the Transwell (12 μm pore diameter: Sigma-Aldrich, Tokyo, Japan) to construct a three-dimensional (3D) cell migration chamber. In the lower chamber, a concentration gradient of fibronectin (FN) or albumin(Alb) was formed in 0.1% type I collagen by diffusion ( C0= 22 nmol/L; concentration gradient: C / C0= 0.7). All cells beneath the membrane were counted 72 hours after 5x104EMT(+) HPMCs (HPMCs after a 48-hour exposure to 10 ng/mL TGFβ1) had been spread in the upper chamber.ResultsAfter 72 hours, the increased motility of HPMCs resulting from their exposure to 10 ng/mL TGFβ1 had returned to baseline, but they retained an elongated morphology. Expression of Snail and MMP2 mRNA reached maximum at 24 hours. Expression of E-cadherin declined, and expression of α5-integrin increased continuously. In the 3D invasion study, significantly enhanced invasion by EMT(+) but not EMT(-) HPMCs was clearly seen in the presence of a FN concentration gradient ( p < 0.01), although invasion by EMT(+) and EMT(-) HPMCs in the absence of a FN concentration gradient was not statistically significantly different. Compared with the EMT(+) control (no concentration gradient), invasion by EMT(+) HPMCs was 2.1 ± 0.5 times (p < 0.05) and 1.4 ± 0.4 times (p = nonsignificant) higher along the FN and Alb concentration gradients respectively. Increased invasion along the FN concentration gradient was significantly inhibited (p < 0.05) when the HPMCs were pre-incubated with 5 μg/mL RGDS (a blocker for α5-integrin to FN).ConclusionsWe conclude that EMT(+) HPMCs invade collagen gel along the FN concentration gradient because of specific binding to RGDS receptors, which bind integrins such as α5-integrin, upregulating invasion-related gene expression associated with synthesis of the cytoskeleton protein α smooth muscle actin.


2021 ◽  
Author(s):  
Jungang Dong ◽  
Zhongbo Zhu ◽  
Guoning Cui ◽  
Zhixuan Zhang ◽  
Juan Yue ◽  
...  

Epithelial-mesenchymal transition (EMT) plays an important role in peritoneal metastasis of Gastric cancer (GC). Tumor exosomes can mediate tumor directed metastasis, and TGF-β1 is an important factor in inducing tumor Epithelial mesenchymal transition. However, it is not clear whether GC derived exosomes can induce peritoneal mesothelial cells through the TGF-β1/ Smads pathway and the effect of injured peritoneal mesothelial cells on the biological characteristics of GC cells. In this study, we demonstrated that GC-derived exosomes can activate the TGF-β1/Smads pathway in peritoneal mesothelial cells and induce the corresponding EMT process, and that the injured peritoneal mesothelial cells can improve the migration and adhesion of GC cells. Taken together, these data further support the critical role of exosomes in the remodeling of the pre-metastatic microenvironment.


1994 ◽  
Vol 3 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Apollo Pronk ◽  
Arthur A.G.M. Hoynck Van Papendrecht ◽  
Piet Leguit ◽  
Henri A. Verbrugh ◽  
Roel P.A.J. Verkooyen ◽  
...  

Cell seeding may decrease the thrombogenicity of implanted vascular grafts, but its application is hampered by the limited availability of autologous endothelial cells. Human peritoneal mesothelial cells have blood flow supporting qualities and are readily available. This study investigated the adherence of mesothelial cells to vascular prostheses and their subsequent growth in vitro. Circular pieces of various vascular prosthetic materials were seeded with 51Chromium-labeled mesothelial and endothelial cells and left for either 5, 15, 30, 60, and 120 minutes. The unattached cells were removed and the degree of cell attachment was measured. The number of mesothelial cells to Dacron increased during the first 60 min up to 35.2 % of the seeded inoculum whereafter a plateau was reached. Scanning electron microscopy showed spreaded mesothelial cells adherent to the Dacron fibers. A significant increase in adherence was observed after preincubation of Dacron with 10 μg/mL fibronectin, but no improvement was found after preincubation with human serum albumin or gelatin. Mesothelial cells adhered better to Gelcoated than to Gelsealed or plain Dacron. The adherence of mesothelial cells to ePTFE (Teflon) was significantly poorer. No significant differences in adherence were found between mesothelial and endothelial cells. Mesothelial cell growth on Dacron resulted in a modest increase in the number of viable cells during 27 days, which implies biocompatibility of Dacron and mesothelial cells in vitro.


1994 ◽  
Vol 17 (5) ◽  
pp. 252-260 ◽  
Author(s):  
J. Witowski ◽  
J. Knapowski

Glycerol has been proposed as a substitute osmotic agent for glucose in peritoneal dialysis fluids. We have compared the effect of glycerol and glucose on the function of human peritoneal mesothelial cells (HPMC) in vitro. The viability of HPMC was not affected by glycerol (up to 250 mM), whereas it was reduced by glucose in a time- and dose-dependent manner, as assessed by the LDH release. Although the incubation of HPMC with glycerol induced a dose-dependent decrease in HPMC proliferation, the effect was significantly less inhibitory than that produced by glucose. In HPMC treated with 90 mM of glycerol or glucose the incorporation of [3H]-thymidine had reached 79.0±19.3% and 55.3+4.0% of the control (p<0.05 and p<0.01), respectively. As measured by the [methyl-14C]-choline incorporation, the intracellular amount of newly synthesized phospholipids was reduced from (cpm/μg cellular protein) 147±58 in control HPMC to 59+15 in cells exposed to 90 mM of glucose (p<0.01), but not affected by glycerol (163±65). On the other hand, both glycerol and glucose (90 mM) decreased the synthesis of proteins (as assessed by the [3H]-proline incorporation) and interfered with potassium (86Rb) transport mechanisms in HPMC. Our data suggest that there exist some possibly advantageous aspects of glycerol as far as mesothelial cell biocompatibility profile is concerned.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuki Kimura ◽  
Hideyuki Ohzawa ◽  
Hideyo Miyato ◽  
Yuki Kaneko ◽  
Akira Saito ◽  
...  

AbstractPeritoneal dissemination is a major metastatic pathway for gastrointestinal and ovarian malignancies. The miR-29b family is downregulated in peritoneal fluids in patients with peritoneal metastases (PM). We examined the effect of miR-29b on mesothelial cells (MC) which play critical a role in the development of PM through mesothelial-mesenchymal transition (MMT). Human peritoneal mesothelial cells (HPMCs) were isolated from surgically resected omental tissue and MMT induced by stimulation with 10 ng/ml TGF-β1. MiR-29b mimics and negative control miR were transfected by lipofection using RNAiMAX and the effects on the MMT evaluated in vitro. HPMC produced substantial amounts of miR-29b which was markedly inhibited by TGF-β1. TGF-β1 stimulation of HPMC induced morphological changes with decreased expression of E-cadherin and calretinin, and increased expression of vimentin and fibronectin. TGF-β1 also enhanced proliferation and migration of HPMC as well as adhesion of tumor cells in a fibronectin dependent manner. However, all events were strongly abrogated by simultaneous transfection of miR-29b. MiR-29b inhibits TGF-β1 induced MMT and replacement of miR-29b in the peritoneal cavity might be effective to prevent development of PM partly through the effects on MC.


2008 ◽  
Vol 28 (3_suppl) ◽  
pp. 88-95 ◽  
Author(s):  
Qinghua Liu ◽  
Haiping Mao ◽  
Jing Nie ◽  
Wei Chen ◽  
Qiongqiong Yang ◽  
...  

⋄ Background Peritoneal fibrosis is a serious complication in long-term peritoneal dialysis (PD) patients. Epithelial-mesenchymal transition (EMT) plays an important role in peritoneal fibrosis, and TGFβ1 is the crucial inducer of EMT. Phosphorylation of Smad proteins is required for TGFβ1-induced EMT. It was reported that C-Jun N-terminal kinase (JNK) was involved in the TGFβ1/Smad signaling pathway and might regulate the activation of Smad proteins. However, whether JNK is activated by TGFβ1 in rat peritoneal mesothelial cells (RPMCs) and the role taken by JNK signaling in EMT induced by TGFβ1 remains undetermined. In the present study, we investigated the role of JNK-Smad pathway in EMT induced by TGFβ1 in RPMCs. ⋄ Methods We harvested RPMCs from the peritoneum of male Sprague-Dawley rats and then cultured the cells in Dulbecco modified Eagle medium / F12 medium with 15% (volume:volume) fetal bovine serum. The cells were pretreated with SP600125, a specific inhibitor of JNK, for 4 hours before incubation with TGFβ1. The protein expression levels of phosphorylated JNK, Smad2, and Smad3 were detected by Western blotting. The messenger RNA levels and protein expression of α-smooth muscle actin (α-SMA), E-cadherin, and collagen I were determined with reverse transcriptase polymerase chain reaction and Western blotting respectively. ⋄ Results Expression of α-SMA and collagen I were significantly increased and expression of E-cadherin decreased with TGFβ1 in RPMCs. Transforming growth factor β1 can stimulate phosphorylated JNK expression from 5 minutes, with the peak at 10 minutes, and phosphorylated Smad2 and Smad3 expression from 10 minutes, with the peak at 30 minutes. The addition of SP600125, which blocked activation of JNK, effectively inhibited TGFβ1-induced phosphorylation of Smad3, but not Smad2. Also, our results showed that SP600125 effectively suppressed TGFβ1-induced high expression of α-SMA and collagen I, and prevented TGFβ1-induced downregulation of E-cadherin expression in RPMCs. ⋄ Conclusions This study demonstrated that JNK signaling may play an important role in EMT induced by TGFβ1 in RPMCs through activation of Smad3, suggesting that JNK inhibitor may prove to be a novel therapeutic agent for peritoneal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document