scholarly journals Cell-Type Specific Oxytocin Gene Expression from AAV Delivered Promoter Deletion Constructs into the Rat Supraoptic Nucleus in vivo

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e32085 ◽  
Author(s):  
Raymond L. Fields ◽  
Todd A. Ponzio ◽  
Makoto Kawasaki ◽  
Harold Gainer
PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e48860 ◽  
Author(s):  
Todd A. Ponzio ◽  
Raymond L. Fields ◽  
Omar M. Rashid ◽  
Yasmmyn D. Salinas ◽  
Daniel Lubelski ◽  
...  

2019 ◽  
Vol 125 (4) ◽  
pp. 431-448 ◽  
Author(s):  
Shirin Doroudgar ◽  
Christoph Hofmann ◽  
Etienne Boileau ◽  
Brandon Malone ◽  
Eva Riechert ◽  
...  

Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7612 ◽  
Author(s):  
Silvia Domcke ◽  
Andrew J. Hill ◽  
Riza M. Daza ◽  
Junyue Cao ◽  
Diana R. O’Day ◽  
...  

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


2019 ◽  
Author(s):  
Ruth A. Houseright ◽  
Emily E. Rosowski ◽  
Pui Ying Lam ◽  
Sebastien JM Tauzin ◽  
Oscar Mulvaney ◽  
...  

AbstractFollowing acute injury, leukocytes rapidly infiltrate into tissues. For efficient recruitment, leukocytes must sense and respond to signals from both from the damaged tissue and from one another. However, the cell type specific transcriptional changes that influence leukocyte recruitment and wound healing have not been well characterized. In this study, we performed a large-scale translating ribosome affinity purification (TRAP) and RNA sequencing screen in larval zebrafish to identify genes differentially expressed by neutrophils, macrophages, and epithelial cells in the context of wounding. We identified the complement pathway and c3a.1, homologous to the C3A component of human complement, as significantly increased in neutrophils in response to a wound. We report that c3a.1−/− zebrafish larvae have impaired neutrophil responses to both tail wounds and localized bacterial infections, as well as increased susceptibility to infection due to a neutrophil-intrinsic function of C3A. We further show that C3A enhances migration of human primary neutrophils to IL-8 and that c3a.1−/− larvae have impaired neutrophil migration in vivo, and a decrease in neutrophil directed migration speed early after wounding. Together, our findings suggest a role for C3A in mediating efficient neutrophil migration to damaged tissues and support the power of TRAP to identify cell-specific changes in gene expression associated with wound-associated inflammation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Davide Seruggia ◽  
Almudena Fernández ◽  
Marta Cantero ◽  
Ana Fernández-Miñán ◽  
José Luis Gomez-Skarmeta ◽  
...  

Abstract Control of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5′ and 3′ boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their mechanistic role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.


1992 ◽  
Vol 12 (8) ◽  
pp. 3563-3572 ◽  
Author(s):  
L Bruhn ◽  
J J Hwang-Shum ◽  
G F Sprague

MCM1 performs several functions necessary for its role in regulating cell type-specific gene expression in the yeast Saccharomyces cerevisiae: DNA binding, transcription activation, and interaction with coregulatory proteins such as alpha 1. We analyzed a set of MCM1 deletion derivatives using in vivo reporter gene assays and in vitro DNA-binding studies to determine which regions of MCM1 are important for its various activities. We also analyzed a set of LexA-MCM1 hybrids to examine the ability of different segments of MCM1 to activate transcription independent of MCM1's DNA-binding function. The first third of MCM1 [MCM1(1-96)], which includes an 80-residue segment homologous to the mammalian serum response factor, was sufficient for high-affinity DNA binding, for activation of reporter gene expression, and for interaction with alpha 1 in vitro and in vivo. However, the ability of MCM1(1-96) to activate transcription and to interact with alpha 1 was somewhat reduced compared with wild-type MCM1 [MCM1(1-286)]. Optimal interaction with alpha 1 required residues 99 to 117, in which 18 of 19 amino acids are acidic in character. Optimal transcription activation required a segment from residues 188 to 286, in which 50% of the amino acids are glutamine. Deletion of this segment from MCM1 reduced expression of reporter genes by about twofold. Moreover, LexA-MCM1 hybrids containing this segment were able to activate expression of reporter genes that rely on LexA binding sites as potential upstream activation sequences. Thus, glutamine-rich regions may contribute to the activation function of yeast transcription activators, as has been suggested for glutamine-rich mammalian proteins such as Sp1.


2010 ◽  
Vol 191 (4) ◽  
pp. 875-890 ◽  
Author(s):  
Martin Distel ◽  
Jennifer C. Hocking ◽  
Katrin Volkmann ◽  
Reinhard W. Köster

The position of the centrosome ahead of the nucleus has been considered crucial for coordinating neuronal migration in most developmental situations. The proximity of the centrosome has also been correlated with the site of axonogenesis in certain differentiating neurons. Despite these positive correlations, accumulating experimental findings appear to negate a universal role of the centrosome in determining where an axon forms, or in leading the migration of neurons. To further examine this controversy in an in vivo setting, we have generated cell type–specific multi-cistronic gene expression to monitor subcellular dynamics in the developing zebrafish cerebellum. We show that migration of rhombic lip–derived neurons is characterized by a centrosome that does not persistently lead the nucleus, but which is instead regularly overtaken by the nucleus. In addition, axonogenesis is initiated during the onset of neuronal migration and occurs independently of centrosome proximity. These in vivo data reveal a new temporal orchestration of organelle dynamics and provide important insights into the variation in intracellular processes during vertebrate brain differentiation.


Sign in / Sign up

Export Citation Format

Share Document