scholarly journals Differential Nutrient Limitation of Soil Microbial Biomass and Metabolic Quotients (qCO2): Is There a Biological Stoichiometry of Soil Microbes?

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e57127 ◽  
Author(s):  
Wyatt H. Hartman ◽  
Curtis J. Richardson
2011 ◽  
Vol 71-78 ◽  
pp. 2992-2998
Author(s):  
Ling Ma ◽  
Sheng Nan Liu ◽  
Xin Hua Ding ◽  
Wei Ma

In this paper, the spatial distributions and seasonal dynamics of soil microbes and microbial biomass were investigated in a typical reed marsh in Zhalong natural wetlands.We wanted to explore the main factors that impacted their spatio-temporal patterns. The results showed that: Bacteria were dominant, followed by actinomyces and fungi were at least in the soil microbes community. The seasonal dynamics of soil microbial biomass carbon and nitrogen were more regularly, and their change patterns were significantly as "W" types. The response of soil microbial biomass in Bottom (10-30cm) to time was slower than the surface, and it fluctuated tinily in every months. The correlation analysis shows that the soil nutrient and soil microbial activity had close relationship. Soil microbial biomass carbon and nitrogen were all significantly positively correlated to quantities of fungus, organic carbon content and Alkali-hytrolyzabel N content(P<0.01), but negative extremely significantly correlated with pH (P<0.01).


2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 854 ◽  
Author(s):  
Chang ◽  
Tian ◽  
Shiau ◽  
Chen ◽  
Chiu

Vegetation in southeastern Taiwan plays an important role in rehabilitating badland soils (high silt and clay content) and maintaining the soil microbial community. The establishment of thorny bamboo (Bambusa stenostachya Hackel) may have had a profound impact on the abundance and community structure of soil microorganisms. However, little is known regarding the influence of bamboo on soil biota in the badland ecosystem. The present study was conducted at three badland sites in southwestern Taiwan and focused on the measurement of phospholipid fatty acids (PLFA) together with soil microbial biomass C (Cmic) and N (Nmic) contents, enzyme activities, and denaturing gradient gel electrophoresis (DGGE) assessments. The abundances of whole soil microbes as well as bacterial and fungal groups—as evident by PLFA, Cmic and Nmic contents—were much higher in the bamboo plantation soils than the bare land soils. The increased soil organic matter in bamboo plantations relative to the control largely explained the enhancement, the abundance and diversity in the soil microbial community. Principal component analysis of individual PLFA peaks separated the bamboo plantation soil from the non-plantation bare land soil. DGGE analysis also revealed a difference in both bacterial and fungal community structures between soil types. Redundancy analysis of PLFA peak abundance and soil properties indicated that microbial community structure was positively correlated with soil organic C and total N and negatively correlated with pH. This differentiation could be attributed to bamboo in suitable habitats providing an essential nutrient source for soil microbes. The pH reduction in these alkaline soils also contributed to the increase in the size of the microbial community in bamboo-regenerated soils. Together, the results of this study indicate that bamboo plantations are beneficial for soil microbial activities and soil quality in badland areas.


2019 ◽  
Vol 11 (10) ◽  
pp. 2804 ◽  
Author(s):  
Haili Xue ◽  
Xiao Lan ◽  
Haoguang Liang ◽  
Qin Zhang

Marine studies have shown that the carbon:nitrogen:phosphorus (C:N:P) atomic ratio in planktonic organisms is generally 106:16:1, which is known as the “Redfield ratio”. This raises the question of whether there are similar patterns in terrestrial organisms, particularly in soil. In this study, we extracted 404 datasets from the literature to analyze the ecological stoichiometry of C, N and P, both in the soil and in the soil microbial biomass in China; additionally, we assessed their relationships with environmental factors, and calculated the homeostasis coefficient (H) of soil microbial biomass. First, although the concentrations of C, N and P in soil and soil microbial biomass showed high spatial heterogeneity, the atomic C:N:P ratios in the soil and soil microbial biomass were relatively consistent at the national scale. Second, the influences of temperature and precipitation on stoichiometric relationships among C, N and P in the soil and soil microbial biomass were limited in China; however, they decreased with the increase in soil pH. Third, the degree of stoichiometric homeostasis for soil microbes spanned a wide range, from non-homeostasis to strict homeostasis. For single elements, most of the soil microbes’ H ranged from 1.01 to 5.00; for elemental ratios, most of the soil microbes’ H displayed strict homeostasis. This study indicates that the “Redfield-like” ratio exists in the soil microbial biomass in the 0–20 cm soil layer in China, with an atomic C:N:P ratio of 66:8:1 and it is close to the atomic C:N:P ratio in the soil (66:5:1) of terrestrial ecosystems. In addition to the N:P ratio in plants, the soil microbial biomass N:P ratio may also be used to judge the nutrient limitations because of its high stability.


Sign in / Sign up

Export Citation Format

Share Document