scholarly journals Characteristics and Environmental Factors of Stoichiometric Homeostasis of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in China

2019 ◽  
Vol 11 (10) ◽  
pp. 2804 ◽  
Author(s):  
Haili Xue ◽  
Xiao Lan ◽  
Haoguang Liang ◽  
Qin Zhang

Marine studies have shown that the carbon:nitrogen:phosphorus (C:N:P) atomic ratio in planktonic organisms is generally 106:16:1, which is known as the “Redfield ratio”. This raises the question of whether there are similar patterns in terrestrial organisms, particularly in soil. In this study, we extracted 404 datasets from the literature to analyze the ecological stoichiometry of C, N and P, both in the soil and in the soil microbial biomass in China; additionally, we assessed their relationships with environmental factors, and calculated the homeostasis coefficient (H) of soil microbial biomass. First, although the concentrations of C, N and P in soil and soil microbial biomass showed high spatial heterogeneity, the atomic C:N:P ratios in the soil and soil microbial biomass were relatively consistent at the national scale. Second, the influences of temperature and precipitation on stoichiometric relationships among C, N and P in the soil and soil microbial biomass were limited in China; however, they decreased with the increase in soil pH. Third, the degree of stoichiometric homeostasis for soil microbes spanned a wide range, from non-homeostasis to strict homeostasis. For single elements, most of the soil microbes’ H ranged from 1.01 to 5.00; for elemental ratios, most of the soil microbes’ H displayed strict homeostasis. This study indicates that the “Redfield-like” ratio exists in the soil microbial biomass in the 0–20 cm soil layer in China, with an atomic C:N:P ratio of 66:8:1 and it is close to the atomic C:N:P ratio in the soil (66:5:1) of terrestrial ecosystems. In addition to the N:P ratio in plants, the soil microbial biomass N:P ratio may also be used to judge the nutrient limitations because of its high stability.

2011 ◽  
Vol 71-78 ◽  
pp. 2992-2998
Author(s):  
Ling Ma ◽  
Sheng Nan Liu ◽  
Xin Hua Ding ◽  
Wei Ma

In this paper, the spatial distributions and seasonal dynamics of soil microbes and microbial biomass were investigated in a typical reed marsh in Zhalong natural wetlands.We wanted to explore the main factors that impacted their spatio-temporal patterns. The results showed that: Bacteria were dominant, followed by actinomyces and fungi were at least in the soil microbes community. The seasonal dynamics of soil microbial biomass carbon and nitrogen were more regularly, and their change patterns were significantly as "W" types. The response of soil microbial biomass in Bottom (10-30cm) to time was slower than the surface, and it fluctuated tinily in every months. The correlation analysis shows that the soil nutrient and soil microbial activity had close relationship. Soil microbial biomass carbon and nitrogen were all significantly positively correlated to quantities of fungus, organic carbon content and Alkali-hytrolyzabel N content(P<0.01), but negative extremely significantly correlated with pH (P<0.01).


2016 ◽  
Vol 8 (2) ◽  
pp. 1126-1132 ◽  
Author(s):  
Sanjay Arora ◽  
Divya Sahni

In modern agriculture, chemical pesticides are frequently used in agricultural fields to increase crop production. Besides combating insect pests, these insecticides also affect the activity and population of beneficial soil microbial communities. Chemical pesticides upset the activities of soil microbes and thus may affect the nutritional quality of soils. This results in serious ecological consequences. Soil microbes had different response to different pesticides. Soil microbial biomass that plays an important role in the soil ecosystem where they have crucial role in nutrient cycling. It has been reported that field application of glyphosate increased microbial biomass carbon by 17% and microbial biomass nitrogen by 76% in nine soils at 14 days after treatment. The soil microbial biomass C increased significantly upto 30 days in chlorpyrifos as well as cartap hydrochloride treated soil, but thereafter decreased progressively with time. Soil nematodes, earthworms and protozoa are affected by field application rates of the fungicide fenpropimorph and other herbicides. Thus, there is need to assess the effect of indiscriminate use of pesticides on soil microorganisms, affecting microbial activity and soil fertility.


2011 ◽  
Vol 149 (4) ◽  
pp. 497-505 ◽  
Author(s):  
W. KAIYONG ◽  
F. HUA ◽  
T. RANAB ◽  
M. A. HANJRAC ◽  
D. BO ◽  
...  

SUMMARYCotton is the dominant crop in the northern Xinjiang oasis of China; it accounts for 0·78 of the total planting area and represents a major contribution to economic development. The objective of the present study is to determine how cotton plantation age affected chemical and microbiological properties of the soil. The time substitution method was used on plantation farmlands, reclaimed from uncultivated land 0, 5, 10, 15 and 20 years ago. A total of 250 soil samples, at depths of 0–200, 200–400, 400–600, 600–800 and 800–1000 mm, were collected from cotton fields in 10 farms of each age category. There were significant differences in soil organic carbon (SOC), total soil nitrogen (TSN), soil available nitrogen (SAN), soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN). There were also differences in the activities of cellulase, invertase and urease between soil layers and plantation ages, and these were most evident in the 200–400 mm layer. The cumulative rates of SOC and SMBC in the 0–1000 mm soil layer at the 5-, 10-, 15- and 20-year sites were 0·89, 0·99, 1·01 and 0·92 mg/kg/yr and 16, 16, 16 and 15 mg/kg/yr, respectively, compared to that at the control site (0 year). The cumulative amounts of SOC and SMBC increased gradually and then decreased, reaching a maximum at plantation ages of 13·1 years and 11·1 years, respectively. This suggests that incorporation of post-harvest cotton residues could be used as an effective measure to improve SOC in farmland of Xinjiang Oasis, and may be recommended for adoption in cotton growing in semi-arid oasis agriculture.


Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 508 ◽  
Author(s):  
Zhiwei Ge ◽  
Shuiyuan Fang ◽  
Han Chen ◽  
Rongwei Zhu ◽  
Sili Peng ◽  
...  

Soil resident water-stable macroaggregates (diameter (Ø) > 0.25 mm) play a critical role in organic carbon conservation and fertility. However, limited studies have investigated the direct effects of stand development on soil aggregation and its associated mechanisms. Here, we examined the dynamics of soil organic carbon, water-stable macroaggregates, litterfall production, fine-root (Ø < 1 mm) biomass, and soil microbial biomass carbon with stand development in poplar plantations (Populus deltoides L. ‘35’) in Eastern Coastal China, using an age sequence (i.e., five, nine, and 16 years since plantation establishment). We found that the quantity of water-stable macroaggregates and organic carbon content in topsoil (0–10 cm depth) increased significantly with stand age. With increasing stand age, annual aboveground litterfall production did not differ, while fine-root biomass sampled in June, August, and October increased. Further, microbial biomass carbon in the soil increased in June but decreased when sampled in October. Ridge regression analysis revealed that the weighted percentage of small (0.25 mm ≤ Ø < 2 mm) increased with soil microbial biomass carbon, while that of large aggregates (Ø ≥ 2 mm) increased with fine-root biomass as well as microbial biomass carbon. Our results reveal that soil microbial biomass carbon plays a critical role in the formation of both small and large aggregates, while fine roots enhance the formation of large aggregates.


1996 ◽  
Vol 76 (4) ◽  
pp. 459-467 ◽  
Author(s):  
William R. Horwath ◽  
Eldor A. Paul ◽  
David Harris ◽  
Jeannette Norton ◽  
Leslie Jagger ◽  
...  

Chloroform fumigation-incubation (CFI) has made possible the extensive characterization of soil microbial biomass carbon (C) (MBC). Defining the non-microbial C mineralized in soils following fumigation remains the major limitation of CFI. The mineralization of non-microbial C during CFI was examined by adding 14C-maize to soil before incubation. The decomposition of the 14C-maize during a 10-d incubation after fumigation was 22.5% that in non-fumigated control soils. Re-inoculation of the fumigated soil raised 14C-maize decomposition to 77% that of the unfumigated control. A method was developed which varies the proportion of mineralized C from the unfumigated soil (UFC) that is subtracted in calculating CFI biomasss C. The proportion subtracted (P) varies according to a linear function of the ratio of C mineralized in the fumigated (FC) and unfumigated samples (FC/UFC) with two parameters K1 and K2 (P = K1FC/UFC) + K2). These parameters were estimated by regression of CFI biomass C, calculated according to the equation MBC = (FC − PUFC)/0.41, against that derived by direct microscopy in a series of California soils. Parameter values which gave the best estimate of microscopic biomass from the fumigation data were K1 = 0.29 and K2 = 0.23 (R2 = 0.87). Substituting these parameter values, the equation can be simplified to MBC = 1.73FC − 0.56UFC. The equation was applied to other CFI data to determine its effect on the measurement of MBC. The use of this approach corrected data that were previously difficult to interpret and helped to reveal temporal trends and changes in MBC associated with soil depth. Key words: Chloroform fumigation-incubation, soil microbial biomass, microscopically estimated biomass, carbon, control, 14C


Sign in / Sign up

Export Citation Format

Share Document