scholarly journals Dung Beetle Community and Functions along a Habitat-Disturbance Gradient in the Amazon: A Rapid Assessment of Ecological Functions Associated to Biodiversity

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57786 ◽  
Author(s):  
Rodrigo F. Braga ◽  
Vanesca Korasaki ◽  
Ellen Andresen ◽  
Julio Louzada
2009 ◽  
Vol 26 (1) ◽  
pp. 53-65 ◽  
Author(s):  
Shahabuddin ◽  
Purnama Hidayat ◽  
Sjafrida Manuwoto ◽  
Woro A. Noerdjito ◽  
Teja Tscharntke ◽  
...  

Abstract:Dung beetles are a functionally important component of most terrestrial ecosystems, but communities change with habitat disturbance and deforestation. In this study, we tested if dung beetle ensembles on dung of introduced cattle and of the endemic anoa, a small buffalo, are affected differentially by habitat disturbance. Therefore, we exposed 10 pitfall traps, five baited with anoa and five baited with cattle dung, per site in six habitat types ranging from natural and selectively logged rain forest to three types of agroforestry system (characterized by different management intensity) and open areas (n = 4 replicate sites per habitat type) at the margin of Lore Lindu National Park, Central Sulawesi, Indonesia. We found 28 species, 43% of which were endemic to Sulawesi. Species richness, abundance and biomass declined from natural forest towards open area. Large-bodied species appeared to be more sensitive to habitat disturbance and the ratio of large to small-sized dung beetles declined with land-use intensity. Although selectively logged forest and cocoa agroforestry systems had lower species richness compared with natural forest, they appeared to maintain a high portion of species originally inhabiting forest sites. The similarity of dung beetle ensembles recorded at forest and agroforestry sites reflects the high similarity of some habitat variables (e.g. vegetation structure and microclimate) between both habitat types compared with open areas. Species richness and abundances as well as species composition, which was characterized by decreases in mean body size, changed with land-use intensity, indicating that dung type is less important than habitat type for determining ensemble structure of these Indonesian dung beetles.


2018 ◽  
Vol 38 (04) ◽  
pp. 373-380
Author(s):  
R. L. Carvalho ◽  
F. Frazão ◽  
R.S. Ferreira–Châline ◽  
J. Louzada ◽  
L. Cordeiro ◽  
...  

AbstractDung beetles (Coleoptera: Scarabaeinae) mediate many ecological functions that are important to maintain the ecosystem functioning of terrestrial environments. Although a large amount of literature explores the dung beetle-mediated ecological processes, little is known about the individual contribution from distinct species. Here, we aimed to examine the intra and interspecific variations in dung burial rates performed by two roller dung beetle species (Canthon smaragdulus Fabricius, 1781 and Canthon sulcatus Castelnau, 1840). Furthermore, we evaluated the relationship between dung beetle biomass and dung burial rates. We set up a laboratorial experiment with three treatments (two males, two females, and a couple) and 10 replicates per treatment for each dung beetle species, and dung burial rates were measured after exposing 100 g of mixed pig and human excrement for 48 hours. Our results demonstrate that dung burial rates of males, females, and couples within each species do not differ. However, C. smaragdulus individuals performed a larger dung burial than C. sulcatus individuals did. In addition, we found no effect of individual biomass on the amount of dung burial on intra and interspecific levels. These findings highlight the need for further research considering that distinct species, even from the same genus, may perform different rates of ecological processes, as well as about the importance for considering the beetle biomass when measuring their ecological functions. We call for studies to fill in the knowledge gap about the individual species’ contribution to the maintenance of different dung beetle-mediated ecological processes.


2020 ◽  
Vol 101 (3) ◽  
pp. 733-741 ◽  
Author(s):  
Gloria B Rodríguez-Gómez ◽  
Francisco E Fontúrbel

Abstract Habitat structure may have a significant influence on the occurrence, abundance, and activity patterns of forest mammals. However, anthropogenic habitat disturbance changes habitat structure, which may alter those patterns of activity. We assessed occurrence, relative abundance, and activity patterns of Dromiciops gliroides, an arboreal marsupial endemic to the temperate rainforests of southern South America, contrasting four forest conditions at a regional scale: old-growth, second-growth, and logged forests, and abandoned exotic plantations. We conducted a camera-trap assessment in two consecutive austral summers across most of the Chilean range of D. gliroides, and compared habitat structure along a disturbance gradient. All structural features assessed differed among forest conditions. Dromiciops gliroides was present in all forest conditions, but its abundance decreased and activity got narrower as disturbance increased, being significantly lower in the exotic plantations. Activity patterns were variable among forest conditions and months, and were significantly more restricted temporally at exotic plantations. Although D. gliroides is tolerant to habitat disturbance, we show that structural alteration results in lower abundances and narrower activity patterns.


2018 ◽  
Author(s):  
Agnis Souza ◽  
Ronara Ferreira-Châline ◽  
Nicolas Châline ◽  
Vanesca Korasaki ◽  
Wallace Beiroz ◽  
...  

Potential negative effects of the synthetic veterinary pharmaceutical, Ivermectin, on non-target fauna have generated a search for less-toxic alternatives. Thus, Neem plant extract (Azadirachta indica A. Juss) has been used as a natural alternative to replace Ivermectin worldwide. However, little is known about the effects of this natural veterinary pharmaceutical’s residues on the behaviour and physiology of adult dung beetles (Coleoptera: Scarabaeinae), which use livestock dung as a feeding and nesting resource. To understand such effects, we performed a non-choice experiment using Dichotomius nisus Oliver, 1798. We evaluated effects of Neem and Ivermectin residues on the ecological functions of dung burial and soil bioturbation performed by dung beetles. Additionally, we performed Soxhlet extraction of dung beetle body fat content to evaluate physiological stress in response to ingestion of Ivermectin or Neem. Our results showed that D. nisus do not alter their behaviour in the presence of Neem and Ivermectin residues in dung when contrasted with the control after 48 hours. However, individuals feeding on dung with Ivermectin residues for a period of twenty days had 5% more body fat content than those from control and Neem treatments. Our findings provide the first evidence that Neem can be a less toxic alternative to non-target fauna than Ivermectin.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205068 ◽  
Author(s):  
Valerie Cortez ◽  
Enrique Canal ◽  
J. Catherine Dupont-Turkowsky ◽  
Tatiana Quevedo ◽  
Christian Albujar ◽  
...  

Author(s):  
Li Yuen Chiew ◽  
Talya D. Hackett ◽  
Jedediah F. Brodie ◽  
Shu Woan Teoh ◽  
David F. R. P. Burslem ◽  
...  

2018 ◽  
Author(s):  
Agnis Souza ◽  
Ronara Ferreira-Châline ◽  
Nicolas Châline ◽  
Vanesca Korasaki ◽  
Wallace Beiroz ◽  
...  

Potential negative effects of the synthetic veterinary pharmaceutical, Ivermectin, on non-target fauna have generated a search for less-toxic alternatives. Thus, Neem plant extract (Azadirachta indica A. Juss) has been used as a natural alternative to replace Ivermectin worldwide. However, little is known about the effects of this natural veterinary pharmaceutical’s residues on the behaviour and physiology of adult dung beetles (Coleoptera: Scarabaeinae), which use livestock dung as a feeding and nesting resource. To understand such effects, we performed a non-choice experiment using Dichotomius nisus Oliver, 1798. We evaluated effects of Neem and Ivermectin residues on the ecological functions of dung burial and soil bioturbation performed by dung beetles. Additionally, we performed Soxhlet extraction of dung beetle body fat content to evaluate physiological stress in response to ingestion of Ivermectin or Neem. Our results showed that D. nisus do not alter their behaviour in the presence of Neem and Ivermectin residues in dung when contrasted with the control after 48 hours. However, individuals feeding on dung with Ivermectin residues for a period of twenty days had 5% more body fat content than those from control and Neem treatments. Our findings provide the first evidence that Neem can be a less toxic alternative to non-target fauna than Ivermectin.


Author(s):  
M.T. Otten ◽  
P.R. Buseck

ALCHEMI (Atom Location by CHannelling-Enhanced Microanalysis) is a TEM technique for determining site occupancies in single crystals. The method uses the channelling of incident electrons along specific crystallographic planes. This channelling results in enhanced x-ray emission from the atoms on those planes, thereby providing the required site-occupancy information. ALCHEMI has been applied with success to spinel, olivine and feldspar. For the garnets, which form a large group of important minerals and synthetic compounds, the channelling effect is weaker, and significant results are more difficult to obtain. It was found, however, that the channelling effect is pronounced for low-index zone-axis orientations, yielding a method for assessing site occupancies that is rapid and easy to perform.


Sign in / Sign up

Export Citation Format

Share Document