scholarly journals Rapid and Efficient Conversion of Integration-Free Human Induced Pluripotent Stem Cells to GMP-Grade Culture Conditions

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e94231 ◽  
Author(s):  
Jens Durruthy-Durruthy ◽  
Sharon F. Briggs ◽  
Jason Awe ◽  
Cyril Y. Ramathal ◽  
Saravanan Karumbayaram ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 5011
Author(s):  
Daehwan Kim ◽  
Sangho Roh

Stem cell research is essential not only for the research and treatment of human diseases, but also for the genetic preservation and improvement of animals. Since embryonic stem cells (ESCs) were established in mice, substantial efforts have been made to establish true ESCs in many species. Although various culture conditions were used to establish ESCs in cattle, the capturing of true bovine ESCs (bESCs) has not been achieved. In this review, the difficulty of establishing bESCs with various culture conditions is described, and the characteristics of proprietary induced pluripotent stem cells and extended pluripotent stem cells are introduced. We conclude with a suggestion of a strategy for establishing true bESCs.


AIDS ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 1127-1139
Author(s):  
Lin Ye ◽  
Jiaming Wang ◽  
Fernando Teque ◽  
Fei Xie ◽  
Yuting Tan ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e97397 ◽  
Author(s):  
Yoshikazu Kishino ◽  
Tomohisa Seki ◽  
Jun Fujita ◽  
Shinsuke Yuasa ◽  
Shugo Tohyama ◽  
...  

2020 ◽  
Author(s):  
Johanna Geuder ◽  
Mari Ohnuki ◽  
Lucas E. Wange ◽  
Aleksandar Janjic ◽  
Johannes W. Bagnoli ◽  
...  

SummaryComparing the molecular and cellular properties among primates is crucial to better understand human evolution and biology. However, it is difficult or ethically even impossible to collect matched tissues from many primates, especially during development. An alternative is to model different cell types and their development using induced pluripotent stem cells (iPSCs). These can be generated from many tissue sources, but non-invasive sampling would decisively broaden the spectrum of non-human primates that can be investigated. Here, we report the generation of primate iPSCs from urine samples. We first validate and optimize the procedure using human urine samples and show that Sendai virus transduction of reprogramming factors into urinary cells efficiently generates integration-free iPSCs, which maintain their pluripotency under feeder-free culture conditions. We demonstrate that this method is also applicable to gorilla and orangutan urinary cells isolated from a non-sterile zoo floor. We characterize the urinary cells, iPSCs and derived neural progenitor cells using karyotyping, immunohistochemistry, differentiation assays and RNA-sequencing. We show that the urine-derived human iPSCs are indistinguishable from well characterized PBMC-derived human iPSCs and that the gorilla and orangutan iPSCs are well comparable to the human iPSCs. In summary, this study introduces a novel and efficient approach to generate iPSCs non-invasively from primate urine. This will allow to extend the zoo of species available for a comparative approach to molecular and cellular phenotypes.Graphical AbstractWorkflow overview for establishing iPSCs from primate urine(A) We established the protocol for human urine based on a previous description (Zhou 2012). We tested volume, storage and culture conditions for primary cells and compared reprogramming by overexpression of OCT3/4, SOX2, KLF4 and MYC (OSKM) via lipofection of episomal vectors and via transduction of a sendai virus derived vector (SeV). (B) We used the the protocol established in humans and adapted it for unsterile floor-collected samples from non-human primates by adding Normocure to the first passages of primary cell culture and reprogrammed visually healthy and uncontaminated cultures using SeV. (C) Pluripotency of established cultures was verified by marker expression, differentiation capacity and cell type classification using RNA sequencing.


2021 ◽  
Author(s):  
Lucas H. Armitage ◽  
Mohsen Khosravi-Maharlooei ◽  
Amy Meacham ◽  
Edward J. Butfiloski ◽  
Ryan Viola ◽  
...  

SummaryDifferentiation of induced pluripotent stem cells (iPSC) into monocytes, monocyte-derived macrophages (MDM), and monocyte-derived dendritic cells (moDC) represents a powerful tool for studying human innate immunology and developing novel iPSC-derived immune therapies. Challenges include inefficiencies in iPSC-derived cell cultures, labor-intensive culture conditions, low purity of desired cell types, and feeder cell requirements. Here, a highly efficient method for differentiating monocytes, MDMs, and moDCs that overcomes these challenges is described. The process utilizes commercially-available materials to derive CD34+ progenitor cells that are apically released from a hemogenic endothelium. Subsequently, the hemogenic endothelium gives rise to highly pure (>95%), CD34-CD14+ monocytes in 19-23 days and yields 13.5-fold more monocytes by day 35 when compared to previous methods. These iPSC-monocytes are analogous to human blood-derived monocytes and readily differentiate into MDM and moDC. The efficient workflow and increase in monocyte output heightens feasibility for high throughput studies and enables clinical-scale iPSC-derived manufacturing processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tackla S. Winston ◽  
Kantaphon Suddhapas ◽  
Chenyan Wang ◽  
Rafael Ramos ◽  
Pranav Soman ◽  
...  

Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.


2019 ◽  
Vol 123 ◽  
pp. 252-260 ◽  
Author(s):  
Deepak Kumar ◽  
Taruna Anand ◽  
Kennady Vijayalakshmy ◽  
Papori Sharma ◽  
Rasika Rajendran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document