scholarly journals Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102124 ◽  
Author(s):  
Hai Yan ◽  
Shuxin Fan ◽  
Chenxiao Guo ◽  
Jie Hu ◽  
Li Dong
Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1377
Author(s):  
Weifang Shi ◽  
Nan Wang ◽  
Aixuan Xin ◽  
Linglan Liu ◽  
Jiaqi Hou ◽  
...  

Mitigating high air temperatures and heat waves is vital for decreasing air pollution and protecting public health. To improve understanding of microscale urban air temperature variation, this paper performed measurements of air temperature and relative humidity in a field of Wuhan City in the afternoon of hot summer days, and used path analysis and genetic support vector regression (SVR) to quantify the independent influences of land cover and humidity on air temperature variation. The path analysis shows that most effect of the land cover is mediated through relative humidity difference, more than four times as much as the direct effect, and that the direct effect of relative humidity difference is nearly six times that of land cover, even larger than the total effect of the land cover. The SVR simulation illustrates that land cover and relative humidity independently contribute 16.3% and 83.7%, on average, to the rise of the air temperature over the land without vegetation in the study site. An alternative strategy of increasing the humidity artificially is proposed to reduce high air temperatures in urban areas. The study would provide scientific support for the regulation of the microclimate and the mitigation of the high air temperature in urban areas.


Author(s):  
Dyah Marganingrum ◽  
Heru Santoso

Indonesia is an archipelago country with a tropical climate. The region of Indonesia is quite large and located between two continents (Asia and Australia) and between two oceans (Indian and Pacific), making the territory of Indonesia has a unique climate pattern. One of the climate variables that quite important to be studied in this chapter is evapotranspiration. The Thornthwaite method was used to estimate potential evapotranspiration based on average air temperature. The relationships between evapotranspiration, precipitation, and elevation were then examined. Besides, temperature variations that affect climate patterns between monsoonal and equatorial regions were compared, between the mainland and small islands, and between mountain and coastal area. The impact of global warming was also examined on the climate and potential evapotranspiration of the Indonesian region. Data analysis showed that evapotranspiration correlates weakly with precipitation, and the contrary, the evapotranspiration correlates strongly with elevation, with correlation indices of 0.02 and 0.89, respectively. The study confirmed that air temperature is the primary controlling variable of the evapotranspiration in this very heterogeneous landscape. Under a global temperature increase of 1.5 °C above the pre-industrialized year (1765), the evapotranspiration is expected to increase in a range from 4.8 to 11.1%. In general, the excess of water to restore soil moisture in the future tends to decrease, i.e., drier.


2017 ◽  
Vol 38 (4) ◽  
pp. 1925-1937 ◽  
Author(s):  
Zhiyan Zuo ◽  
Song Yang ◽  
Kang Xu ◽  
Renhe Zhang ◽  
Qiong He ◽  
...  

Author(s):  
P. D. Jones ◽  
S. C. B. Raper ◽  
R. S. Bradley ◽  
H. F. Diaz ◽  
P. M. Kellyo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document