scholarly journals Illumina Amplicon Sequencing of 16S rRNA Tag Reveals Bacterial Community Development in the Rhizosphere of Apple Nurseries at a Replant Disease Site and a New Planting Site

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e111744 ◽  
Author(s):  
Jian Sun ◽  
Qiang Zhang ◽  
Jia Zhou ◽  
Qinping Wei
2020 ◽  
Vol 96 (11) ◽  
Author(s):  
Jianxiao Song ◽  
Uli Klümper ◽  
Leise Riber ◽  
Arnaud Dechesne ◽  
Barth F Smets ◽  
...  

ABSTRACT Stressors like metals or antibiotics can affect bacterial community permissiveness for plasmid uptake, but there is little knowledge about long-term effects of such stressors on the evolution of community permissiveness. We assessed the effect of more than 90 years of soil Cu contamination on bacterial community permissiveness (i.e. uptake ability) toward a gfp-tagged IncP-1 plasmid (pKJK5) introduced via an Escherichia coli donor. Plasmid transfer events from the donor to the recipient soil bacterial community were quantified and transconjugants were subsequently isolated by fluorescence activated cell sorting and identified by 16S rRNA gene amplicon sequencing. Transfer frequency of plasmid pKJK5 was reduced in bacterial communities extracted from highly Cu contaminated (4526 mg kg−1) soil compared to corresponding communities extracted from moderately (458 mg kg−1) Cu contaminated soil and a low Cu reference soil (15 mg kg−1). The taxonomic composition of the transconjugal pools showed remarkable similarities irrespective of the degree of soil Cu contamination and despite contrasting compositions of the extracted recipient communities and the original soil communities. Permissiveness assessed at the level of individual operational taxonomic units (OTUs; 16S rRNA gene 97% sequence similarity threshold) was only slightly affected by soil Cu level and high replicate variability of OTU-level permissiveness indicated a role of stochastic events in IncP-1 plasmid transfer or strain-to-strain permissiveness variability.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e41606 ◽  
Author(s):  
Sebastian Jünemann ◽  
Karola Prior ◽  
Rafael Szczepanowski ◽  
Inga Harks ◽  
Benjamin Ehmke ◽  
...  

LWT ◽  
2018 ◽  
Vol 90 ◽  
pp. 186-192 ◽  
Author(s):  
Anna Kristina Witte ◽  
Christine Leeb ◽  
Beate Pinior ◽  
Patrick Mester ◽  
Susanne Fister ◽  
...  

2014 ◽  
Vol 80 (24) ◽  
pp. 7583-7591 ◽  
Author(s):  
Stephen J. Salipante ◽  
Toana Kawashima ◽  
Christopher Rosenthal ◽  
Daniel R. Hoogestraat ◽  
Lisa A. Cummings ◽  
...  

ABSTRACTHigh-throughput sequencing of the taxonomically informative 16S rRNA gene provides a powerful approach for exploring microbial diversity. Here we compare the performances of two common “benchtop” sequencing platforms, Illumina MiSeq and Ion Torrent Personal Genome Machine (PGM), for bacterial community profiling by 16S rRNA (V1-V2) amplicon sequencing. We benchmarked performance by using a 20-organism mock bacterial community and a collection of primary human specimens. We observed comparatively higher error rates with the Ion Torrent platform and report a pattern of premature sequence truncation specific to semiconductor sequencing. Read truncation was dependent on both the directionality of sequencing and the target species, resulting in organism-specific biases in community profiles. We found that these sequencing artifacts could be minimized by using bidirectional amplicon sequencing and an optimized flow order on the Ion Torrent platform. Results of bacterial community profiling performed on the mock community and a collection of 18 human-derived microbiological specimens were generally in good agreement for both platforms; however, in some cases, results differed significantly. Disparities could be attributed to the failure to generate full-length reads for particular organisms on the Ion Torrent platform, organism-dependent differences in sequence error rates affecting classification of certain species, or some combination of these factors. This study demonstrates the potential for differential bias in bacterial community profiles resulting from the choice of sequencing platform alone.


2022 ◽  
Vol 68 (01/2022) ◽  
Author(s):  
Young Kim ◽  
Hae Jung ◽  
Yong-Sung Choi ◽  
Hye Chang ◽  
Sang Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document