scholarly journals Effects of Ferulic Acid and γ-Oryzanol on High-Fat and High-Fructose Diet-Induced Metabolic Syndrome in Rats

PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0118135 ◽  
Author(s):  
Ou Wang ◽  
Jia Liu ◽  
Qian Cheng ◽  
Xiaoxuan Guo ◽  
Yong Wang ◽  
...  
2017 ◽  
Vol 280 ◽  
pp. S274
Author(s):  
Barbara Kaprinay ◽  
Boris Lipták ◽  
Ružena Sotníková ◽  
Vladimír Knezl ◽  
Zdenka Gáspárová

2020 ◽  
Author(s):  
Nurliyani ◽  
Eni Harmayani ◽  
Sunarti

Abstract Kefir is fermented milk product containing bacteria and yeast, whereas glucomannan from porang (Amorphophallus oncophyllus) tuber has known as prebiotic in vivo. Diets with a high fat and high sugar will stimulate metabolic syndrome. The objective of this study were to determine the effect of synbiotic kefir (goat milk kefir enriched with porang glucomannan) on blood glucose, hemoglobin A1c (HbA1c), free fatty acid (FFA), tumor necrosis factor alpha (TNF-α), gene expression of peroxisome proliferator activated receptor gamma (PPARγ), and insulin producing cells in rat fed high- fat and high- fructose (HFHF) diet. Rats were divided into 5 groups: normal; high fat high fructose (HFHF); HFHF + probiotic kefir; HFHF + synbiotic kefir; and HFHF + simvastatin. There was no significantly differences in plasma blood glucose in HFHF rat after treated with synbiotic kefir. However, synbiotic kefir could decrease HbA1c and plasma TNFα, and inhibit the increasing FFA in HFHF rats. Probiotic and synbiotic kefir could decrease gene expression of PPARγ2 in both of adipose and liver tissue in HFHF rats, but had no effect on total number of Langerhans islet and insulin producing cell. In conclusion, synbiotic kefir could ameliorate the health of rats in condition of high-fat and high-fructose diet, through decreasing in HbA1c, TNFα, and gene expression of PPARγ2 and also prevent the increasing of FFA. Therefore, synbiotic kefir containing porang glucomannan is expected to be a suggestion for the food industry to develop synbiotic-based functional foods which has the potential to improve metabolic syndrome


Author(s):  
Jiraprapa Ponglong ◽  
Laddawan Senggunprai ◽  
Panot Tungsutjarit ◽  
Ronnachai Changsri ◽  
Tunvaraporn Proongkhong ◽  
...  

Objective: Tubtim-chumphae rice is hybrid Thai rice with a red pericarp. This study was aimed to investigate the effect of Tubtim-chumphae rice bran on insulin resistance and intrahepatic fat accumulation in high-fat-high-fructose diet (HFFD) fed rats.Methods: Ethanolic extract of rice bran (ERB) was prepared using a 50% ethanol-water. Male Sprague-Dawley rats were fed HFFD (40% lard, 20% fructose) for 10 weeks, followed by concomitant administrations of distilled water or ERB at 250 or 500 mg/kg/day or pioglitazone at 10 mg/kg/day for a further 4 weeks in treated groups. Normal control rats were fed normal chow and distilled water. At the end of all treatments, fasting blood glucose (FBG), an oral glucose tolerance test (OGTT), serum insulin levels, lipid profiles, and liver fat contents were measured. Liver histological and peroxisome proliferator-activated receptor-α (PPAR-α) gene expression examinations were performed.Results: At week 14, control HFFD rats had significantly (p<0.05) higher FBG, low-density lipoprotein cholesterol, triglycerides, and insulin secretions together with impaired OGTT as compared to normal control rats. These parameters indicated an insulin resistant and dyslipidemic condition in HFFD rats. ERB 250 and 500 mg/kg or pioglitazone 10 mg/kg significantly ameliorated all of these changes. HFFD also caused a significant increase in fat accumulation and a decrease in PPAR-α gene expression in the livers which were significantly decreased by ERB.Conclusions: ERB decreases insulin resistance and intrahepatic fat accumulation possibly through increasing PPAR-α gene expression in HFFD rats. ERB might possibly be a neutraceutical for the metabolic syndrome patients.1. Gauthier MS, Favier R, Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006;95:273-81.2. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.3. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016;26:364-73.4. Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2018;119:368-80.5. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010;299:E685-94.6. Vichit W, Saewan N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int J Pharm Pharm Sci 2015;7:329-34.7. Settharaksa S, Madaka F, Charkree K, Charoenchai L. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014;6:428-31.8. Sukrasno S, Tuty S, Fidrianny I. Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, central Java, Indonesia. Asian J Pharm Clin Res 2017;10:377-82.9. Sabir A, Rafi M, Darusman LK. Discrimination of red and white rice bran from indonesia using HPLC fingerprint analysis combined with chemometrics. Food Chem 2017;221:1717-22.10. Niu Y, Gao B, Slavin M, Zhang X, Yang F, Bao J, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT Food Sci Technol 2013;54:521-7.11. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015;7:6313-29.12. Peñarrieta JM, Alvarado JA, Akesson B, Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An andean pseudocereal. Mol Nutr Food Res 2008;52:708-17.13. Mungkhunthod S, Senggunprai L, Tangsucharit P, Sripui J, Kukongviriyapan U, Pannangpetch P. Antidesma thwaitesianum pomace extract improves insulin sensitivity via upregulation of PPAR-γ in high fat diet/streptozotocin-induced Type 2 diabetic rats. Asia Pac J Sci Technol 2016;21:63-76.14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.15. Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016;6:232-8.16. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin


2018 ◽  
Vol 66 (46) ◽  
pp. 12412-12420 ◽  
Author(s):  
Jianan Zhang ◽  
Liang Zhao ◽  
Qian Cheng ◽  
Baoping Ji ◽  
Mengyan Yang ◽  
...  

2021 ◽  
Vol 24 (10) ◽  
pp. 1022-1033
Author(s):  
Safaa M. Awad ◽  
Nora M. El-Shei ◽  
Hanem Abdel-Sabo ◽  
Huda M. Ismail Abo

2015 ◽  
Vol 64 (4) ◽  
pp. 435-442 ◽  
Author(s):  
Zhang Zhuhua ◽  
Wang Zhiquan ◽  
Yang Zhen ◽  
Niu Yixin ◽  
Zhang Weiwei ◽  
...  

Author(s):  
Jiraprapa Ponglong ◽  
Laddawan Senggunprai ◽  
Panot Tungsutjarit ◽  
Ronnachai Changsri ◽  
Tunvaraporn Proongkhong ◽  
...  

Objective: Tubtim-chumphae rice is hybrid Thai rice with a red pericarp. This study was aimed to investigate the effect of Tubtim-chumphae rice bran on insulin resistance and intrahepatic fat accumulation in high-fat-high-fructose diet (HFFD) fed rats.Methods: Ethanolic extract of rice bran (ERB) was prepared using a 50% ethanol-water. Male Sprague-Dawley rats were fed HFFD (40% lard, 20% fructose) for 10 weeks, followed by concomitant administrations of distilled water or ERB at 250 or 500 mg/kg/day or pioglitazone at 10 mg/kg/day for a further 4 weeks in treated groups. Normal control rats were fed normal chow and distilled water. At the end of all treatments, fasting blood glucose (FBG), an oral glucose tolerance test (OGTT), serum insulin levels, lipid profiles, and liver fat contents were measured. Liver histological and peroxisome proliferator-activated receptor-α (PPAR-α) gene expression examinations were performed.Results: At week 14, control HFFD rats had significantly (p<0.05) higher FBG, low-density lipoprotein cholesterol, triglycerides, and insulin secretions together with impaired OGTT as compared to normal control rats. These parameters indicated an insulin resistant and dyslipidemic condition in HFFD rats. ERB 250 and 500 mg/kg or pioglitazone 10 mg/kg significantly ameliorated all of these changes. HFFD also caused a significant increase in fat accumulation and a decrease in PPAR-α gene expression in the livers which were significantly decreased by ERB.Conclusions: ERB decreases insulin resistance and intrahepatic fat accumulation possibly through increasing PPAR-α gene expression in HFFD rats. ERB might possibly be a neutraceutical for the metabolic syndrome patients.1. Gauthier MS, Favier R, Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 2006;95:273-81.2. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58.3. Grundy SM. Metabolic syndrome update. Trends Cardiovasc Med 2016;26:364-73.4. Fouret G, Gaillet S, Lecomte J, Bonafos B, Djohan F, Barea B, et al. 20-week follow-up of hepatic steatosis installation and liver mitochondrial structure and activity and their interrelation in rats fed a high-fat-high-fructose diet. Br J Nutr 2018;119:368-80.5. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010;299:E685-94.6. Vichit W, Saewan N. Antioxidant activities and cytotoxicity of thai pigmented rice. Int J Pharm Pharm Sci 2015;7:329-34.7. Settharaksa S, Madaka F, Charkree K, Charoenchai L. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014;6:428-31.8. Sukrasno S, Tuty S, Fidrianny I. Antioxidant evaluation and phytochemical content of various rice bran extracts of three varieties rice from Semarang, central Java, Indonesia. Asian J Pharm Clin Res 2017;10:377-82.9. Sabir A, Rafi M, Darusman LK. Discrimination of red and white rice bran from indonesia using HPLC fingerprint analysis combined with chemometrics. Food Chem 2017;221:1717-22.10. Niu Y, Gao B, Slavin M, Zhang X, Yang F, Bao J, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT Food Sci Technol 2013;54:521-7.11. Boonloh K, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U, Thawornchinsombut S, Pannangpetch P, et al. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 2015;7:6313-29.12. Peñarrieta JM, Alvarado JA, Akesson B, Bergenståhl B. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An andean pseudocereal. Mol Nutr Food Res 2008;52:708-17.13. Mungkhunthod S, Senggunprai L, Tangsucharit P, Sripui J, Kukongviriyapan U, Pannangpetch P. Antidesma thwaitesianum pomace extract improves insulin sensitivity via upregulation of PPAR-γ in high fat diet/streptozotocin-induced Type 2 diabetic rats. Asia Pac J Sci Technol 2016;21:63-76.14. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC, et al. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9.15. Naowaboot J, Wannasiri S. Anti-lipogenic effect of Senna alata leaf extract in high-fat diet-induced obese mice. Asian Pac J Trop Biomed 2016;6:232-8.16. Couturier K, Qin B, Batandier C, Awada M, Hininger-Favier I, Canini F, et al. Cinnamon increases liver glycogen in an animal model of insulin


Author(s):  
Nur Islami Dini Hanifah ◽  
Retno Murwani ◽  
Achmad Zulfa Juniarto

Background: Etlingera elatior (Ee) contains phytochemical compounds that are rich in antioxidants, which may reduce several biochemical markers of metabolic syndrome (MetS). Objective: We aimed to study the effect of fresh Etlingera elatior (FEe) and steamed Etlingera elatior (SEe) as a part of rat diet on the body weight, serum lipid, and malondialdehyde (MDA) level in Wistar rats with MetS induced by a highfat, high-fructose diet. Method: Our research was a true experimental randomized control group design with pre- and post-test. A total of 24 male Wistar rats were divided randomly into the following four groups: 1) Control, fed standard rat diet during the whole duration of the study, 2) HFFr-Sd, fed high-fat high-fructose (HFFr) diet for 29 days, followed by 29 days of the standard diet, 3) HFFr-FEe, fed HFFr diet for 29 days, followed by 29 days of a standard diet containing 33.3% FEe, and 4) HFFrSEe, fed HFFr diet for 29 days, followed by 29 days of a standard diet containing 33.3% SEe. The HFFr diet was given at 15 g/day along with fructose drink (20% pure fructose) at 100 ml/day. The diets in each group after the MetS induction period is referred to as intervention diets. Data at the end of HFFr (pre) and intervention diets (post) were analyzed by paired t-test. The data among groups were analyzed by one-way analysis of variance followed by post hoc test. Results: HFFr diet for 29 days induced MetS in Wistar rats fulfilling the criteria of obesity (Lee Index), hypertriglyceridemia, and decreased high-density lipoprotein cholesterol (HDL-C). Also, there was a significant increase in serum total cholesterol, low-density lipoprotein cholesterol (LDL-C), and MDA level (p < 0.05). Feeding a diet contaning FEe or SEe can significantly reduce body weight, serum triglyceride, total cholesterol, LDL-C, and MDA, and increase HDL-C levels (p < 0.05). The effect of FEe was more pronounced in ameliorating body weight and lipid profile than SEe. Conclusion: Fresh Ee and Steamed Ee can ameliorate obesity, dyslipidemia, and oxidative stress in MetS Wistar rats induced by a high-fat high-fructose diet. It suggests that dietary Ee accounting for one-third of daily standard diet can assist in normalizing some MetS markers in rats.


2018 ◽  
Vol 123 (Suppl_1) ◽  
Author(s):  
Yijun Yang ◽  
Yunichel Joo ◽  
Tao Wang ◽  
Giulia Borghetti ◽  
Shavonn Harper ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document