scholarly journals Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs

PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0155598 ◽  
Author(s):  
Pengfei Xu ◽  
Yingjie Zhang ◽  
Xinghao Jiang ◽  
Junyan Li ◽  
Liying Song ◽  
...  
2018 ◽  
Vol 293 (44) ◽  
pp. 17218-17228 ◽  
Author(s):  
Romario Regeenes ◽  
Pamuditha N. Silva ◽  
Huntley H. Chang ◽  
Edith J. Arany ◽  
Andrey I. Shukalyuk ◽  
...  

Fibroblast growth factor receptor-1 (FGFR1) activity at the plasma membrane is tightly controlled by the availability of co-receptors and competing receptor isoforms. We have previously shown that FGFR1 activity in pancreatic beta-cells modulates a wide range of processes, including lipid metabolism, insulin processing, and cell survival. More recently, we have revealed that co-expression of FGFR5, a receptor isoform that lacks a tyrosine-kinase domain, influences FGFR1 responses. We therefore hypothesized that FGFR5 is a co-receptor to FGFR1 that modulates responses to ligands by forming a receptor heterocomplex with FGFR1. We first show here increased FGFR5 expression in the pancreatic islets of nonobese diabetic (NOD) mice and also in mouse and human islets treated with proinflammatory cytokines. Using siRNA knockdown, we further report that FGFR5 and FGFR1 expression improves beta-cell survival. Co-immunoprecipitation and quantitative live-cell imaging to measure the molecular interaction between FGFR5 and FGFR1 revealed that FGFR5 forms a mixture of ligand-independent homodimers (∼25%) and homotrimers (∼75%) at the plasma membrane. Interestingly, co-expressed FGFR5 and FGFR1 formed heterocomplexes with a 2:1 ratio and subsequently responded to FGF2 by forming FGFR5/FGFR1 signaling complexes with a 4:2 ratio. Taken together, our findings identify FGFR5 as a co-receptor that is up-regulated by inflammation and promotes FGFR1-induced survival, insights that reveal a potential target for intervention during beta-cell pathogenesis.


2014 ◽  
Vol 19 (12) ◽  
pp. 864-878 ◽  
Author(s):  
Yuki Furusawa ◽  
Akira Uruno ◽  
Yoko Yagishita ◽  
Chika Higashi ◽  
Masayuki Yamamoto

2016 ◽  
Vol 130 (8) ◽  
pp. 625-641 ◽  
Author(s):  
Jingjing Zhang ◽  
Yanli Cheng ◽  
Junlian Gu ◽  
Shudong Wang ◽  
Shanshan Zhou ◽  
...  

Fenofibrate (FF) as a commonly-used lipid-lowering medicine in clinics was examined for its potentially repurposing to prevent the cardiac abnormalities in patients with type 1 diabetes. We demonstrated here that fenofibrate significantly prevented diabetes-induced cardiac dysfunction and remodeling in fibroblast growth factor 21 (FGF21)-dependent manner.


Diabetes ◽  
2018 ◽  
Vol 67 (5) ◽  
pp. 974-985 ◽  
Author(s):  
Zhongjie Fu ◽  
Zhongxiao Wang ◽  
Chi-Hsiu Liu ◽  
Yan Gong ◽  
Bertan Cakir ◽  
...  

2018 ◽  
Author(s):  
Fahim Ebrahimi ◽  
Carole Wolffenbuttel ◽  
Claudine A Blum ◽  
Beat Muller ◽  
Philipp Schuetz ◽  
...  

2019 ◽  
Author(s):  
Fahim Ebrahimi ◽  
Sandrine Urwyler ◽  
Matthias Betz ◽  
Emanuel Christ ◽  
Philipp Schuetz ◽  
...  

Author(s):  
Ewa Szczepańska ◽  
Małgorzata Gietka-Czernel ◽  
Piotr Glinicki ◽  
Helena Jastrzębska ◽  
Jadwiga Słowińska-Srzednicka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document