scholarly journals Peripersonal Space and Margin of Safety around the Body: Learning Visuo-Tactile Associations in a Humanoid Robot with Artificial Skin

PLoS ONE ◽  
2016 ◽  
Vol 11 (10) ◽  
pp. e0163713 ◽  
Author(s):  
Alessandro Roncone ◽  
Matej Hoffmann ◽  
Ugo Pattacini ◽  
Luciano Fadiga ◽  
Giorgio Metta
2021 ◽  
pp. 315-330
Author(s):  
Michael S.A. Graziano

The brain evolved to give special representation to the space immediately around the body. One of the most obvious adaptive uses of that peripersonal space is self-protection. It is a safety buffer zone, and intrusions can trigger a suite of protective behaviours. Perhaps less obvious is the possible relationship between that complex protective mechanism and social signalling. Standing tall, cringing, power poses and handshakes, even coquettish tilts of the head that expose the neck, may all relate in some manner to that safety buffer, signalling to others that one’s protective mechanisms are heightened (when anxious) or reduced (when confident). Here I propose that some of our most fundamental human emotional expressions such as smiling, laughing, and crying may also have a specific evolutionary relationship to the buffer zone around the body, deriving ultimately from the reflexive actions that protect us.


Author(s):  
Samuel B. Hunley ◽  
Arwen M. Marker ◽  
Stella F. Lourenco

Abstract. The current study investigated individual differences in the flexibility of peripersonal space (i.e., representational space near the body), specifically in relation to trait claustrophobic fear (i.e., fear of suffocating or being physically restricted). Participants completed a line bisection task with either a laser pointer (Laser condition), allowing for a baseline measure of the size of one’s peripersonal space, or a stick (Stick condition), which produces expansion of one’s peripersonal space. Our results revealed that individuals high in claustrophobic fear had larger peripersonal spaces than those lower in claustrophobic fear, replicating previous research. We also found that, whereas individuals low in claustrophobic fear demonstrated the expected expansion of peripersonal space in the Stick condition, individuals high in claustrophobic fear showed less expansion, suggesting decreased flexibility. We discuss these findings in relation to the defensive function of peripersonal space and reduced attentional flexibility associated with trait anxieties.


2021 ◽  
Author(s):  
Hao Zhao ◽  
Jingwen Xu ◽  
Haitao Yuan ◽  
Endong Zhang ◽  
Nan Dai ◽  
...  

Inspired by the skin biofunction of protecting the body from microorganism invasion, artificially manufacturing human skin in vitro with promising antibacterial capability and cell affinity is urgently required in wound...


2019 ◽  
Author(s):  
Lise Hobeika ◽  
Marine Taffou ◽  
Thibaut Carpentier ◽  
Olivier Warusfel ◽  
Isabelle Viaud-Delmon

AbstractHighlightsLogarithmically distributed auditory distances provides an apt granularity of PPSMeasuring expectation helps to interpret behavioral impact of audiotactile integrationTactile RTs follows a logarithmic decrease due to audiotactile integrationPeripersonal space is better characterized and quantified with this refinementBackgroundHumans perceive near space and far space differently. Peripersonal space, i.e. the space directly surrounding the body, is often studied using paradigms based on auditory-tactile integration. In these paradigms, reaction time to a tactile stimulus is measured in the presence of a concurrent auditory looming stimulus.New MethodWe propose here to refine the experimental procedure considering sound propagation properties in order to improve granularity and relevance of auditory-tactile integration measures. We used a logarithmic distribution of distances for this purpose. We also want to disentangle behavioral contributions of the targeted audiotactile integration mechanisms from expectancy effects. To this aim, we added to the protocol a baseline with a fixed sound distance.ResultsExpectation contributed significantly to overall behavioral responses. Subtracting it isolated the audiotactile effect due to the stimulus proximity. This revealed that audiotactile integration effects have to be tested on a logarithmic scale of distances, and that they follow a linear variation on this scale.Comparison with Existing Method(s)The granularity of the current method is more relevant, providing higher spatial resolution in the vicinity of the body. Furthermore, most of the existing methods propose a sigmoid fitting, which rests on the intuitive framework that PPS is an in-or-out zone. Our results suggest that behavioral effects follow a logarithmic decrease, thus a response graduated in space.ConclusionsThe proposed protocol design and method of analysis contribute to refine the experimental investigation of the factors influencing and modifying multisensory integration phenomena in the space surrounding the body.


2018 ◽  
Author(s):  
Axel Davies Vittersø ◽  
Monika Halicka ◽  
Gavin Buckingham ◽  
Michael J Proulx ◽  
Mark Wilson ◽  
...  

Representations of the body and peripersonal space can be distorted for people with some chronic pain conditions. Experimental pain induction can give rise to similar, but transient distortions in healthy individuals. However, spatial and bodily representations are dynamic, and constantly update as we interact with objects in our environment. It is unclear whether induced pain disrupts the mechanisms involved in updating these representations. In the present study, we sought to investigate the effect of induced pain on the updating of peripersonal space and body representations during and following tool-use. We compared performance under three conditions (pain, active placebo, neutral) on a visuotactile crossmodal congruency task and a tactile distance judgement task to measure updating of peripersonal space and body representations, respectively. We induced pain by applying 1% capsaicin cream to the arm, and for placebo we used a gel that induced non-painful warming. Consistent with previous findings, the difference in crossmodal interference from visual distractors in the same compared to opposite visual field to the tactile target was less when tools were crossed than uncrossed. This suggests an extension of peripersonal space to incorporate the tips of the tools. Also consistent with previous findings, estimates of the felt distance between two points (tactile distance judgements) decreased after active tool-use. In contrast to our predictions, however, we found no evidence that pain interfered with performance on either task when compared to the control conditions. This suggests that the updating of peripersonal space and body representations is not disrupted by induced pain. Therefore, acute pain does not account for the distorted representations of the body and peripersonal space that can endure in people with chronic pain conditions.


2021 ◽  
pp. 155-180
Author(s):  
R.J. Bufacchi ◽  
G.D. Iannetti

The magnitude of a large number of behavioural and neurophysiological measures depends on the proximity between an individual and environmental objects. This relationship has led to the concept of peripersonal space (PPS). Here we argue that the proximity-dependence of such PPS measures could arise as a result of calculating the relevance of actions that aim to create or avoid contact with objects in the world. This perspective, supported by the interactive behaviour framework of systems-level brain function, allows us to describe PPS as a set of continuous fields reflecting contact-related action relevance. The action relevance perspective gets rid of incorrect notions about PPS, such as it being a single in-or-out zone that mainly reflects the spatial distance between objects and the body. This reconceptualization incorporates PPS into mainstream theories of action selection and behaviour. Furthermore, the formal comparison of this framework to others shows that contact-action value allows for a more complete description of PPS measures than proximity coding, impact prediction, and multisensory integration do, while simultaneously explaining the relationship between those concepts and PPS measures.


Sign in / Sign up

Export Citation Format

Share Document