scholarly journals Origin and Dispersal History of Two Colonial Ascidian Clades in the Botryllus schlosseri Species Complex

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169944 ◽  
Author(s):  
Marie L. Nydam ◽  
Kirsten B. Giesbrecht ◽  
Emily E. Stephenson
Author(s):  
Riccardo Brunetti ◽  
Francesca Griggio ◽  
Francesco Mastrototaro ◽  
Fabio Gasparini ◽  
Carmela Gissi

Abstract Botryllus schlosseri is a model colonial ascidian and a marine invader. It is currently recognized as a species complex comprising five genetically divergent clades, with clade A globally distributed and clade E found only in Europe. This taxon has also been recently redescribed by designation of a clade A specimen as the neotype. To clarify the taxonomic status of clade E and its relationship to clade A, we examine the entire mitochondrial genome and study the morphology of clade E. The mitogenome of clade E has an identical gene order to clade A, but substantially differs in the size of several non-coding regions. Remarkably, the nucleotide divergence of clade A-clade E is incompatible with the intraspecies ascidian divergence, but similar to the congeneric one and almost identical to the divergence between species once considered morphologically indistinguishable (e.g. the pair Ciona intestinalis (Linnaeus, 1767)-Ciona robusta Hoshino & Tokioka, 1967, and the pair Botrylloides niger Herdman, 1886-Botrylloides leachii (Savigny, 1816)). Clade E differs morphologically from the Botryllusschlosseri neotype mainly in the number and appearance of the stomach folds, and the shape of the anal opening, the first intestinal loop and the typhlosole. Our integrative taxonomical approach clearly distinguishes clade E as a species separate from Botryllusschlosseri, with unique morphological and molecular characters. Therefore, we here describe clade E as the new species Botryllus gaiae sp. nov.


2011 ◽  
Vol 47 (5) ◽  
pp. 365-369 ◽  
Author(s):  
Kristine Bruskiewicz ◽  
Martin Crawford-Jakubiak

A 9 yr old male castrated Australian shepherd mixed-breed dog with a 3 mo history of intermittent unilateral epistaxis was diagnosed with Pseudallescheria boydii species complex fungal rhinitis and sinusitis. This fungal organism is a rare cause of disease in dogs and an emerging human pathogen. The dog was successfully treated with topical clotrimazole.


2017 ◽  
Vol 69 ◽  
pp. 60-74 ◽  
Author(s):  
Marie L. Nydam ◽  
Emily E. Stephenson ◽  
Claire E. Waldman ◽  
Anthony W. De Tomaso

The Auk ◽  
2019 ◽  
Vol 137 (1) ◽  
Author(s):  
Alyssa M Fitzgerald ◽  
Jason Weir ◽  
Joel Ralston ◽  
Ian G Warkentin ◽  
Darroch M Whitaker ◽  
...  

Abstract We examined species limits, admixture, and genetic structure among populations in the Bicknell’s Thrush (Catharus bicknelli)–Gray-cheeked Thrush (C. minimus) species complex to establish the geographic and temporal context of speciation in this group, which is a model system in ecology and a high conservation priority. We obtained mitochondrial ND2 sequences from 186 Bicknell’s Thrushes, 77 Gray-cheeked Thrushes, and 55 individuals of their closest relative, the Veery (C. fuscescens), and genotyped a subset of individuals (n = 72) at 5,633 anonymous single nucleotide polymorphic (SNP) loci. Between-species sequence divergence was an order of magnitude greater than divergence within each species, divergence was dated to the late Pleistocene (420 kbp) based on Bayesian coalescence estimation, and a coalescent model (IMa) revealed almost no gene flow between species based on ND2. SNP data were consistent with mitochondrial results and revealed low levels of admixture among species (3 of 37 Bicknell’s Thrushes, no Gray-cheeked Thrushes, and no Veeries were >2% admixed). Species distribution models projected to the Last Glacial Maximum suggest that Bicknell’s Thrush and Gray-cheeked Thrush resided in primarily allopatric refugia in the late Pleistocene, consistent with the genetic data that support reproductive isolation over an extended period of time. Our genetic data suggest that both species underwent demographic expansions, possibly as they expanded out of Pleistocene refugia into their current ranges. We conclude that Bicknell’s Thrush and Gray-cheeked Thrush are 2 distinct species-level lineages despite low levels of Gray-cheeked Thrush introgression in Bicknell’s Thrushes, and divergence has been maintained by a long history of allopatry in subtly different habitats. Their unique phylogeography among boreal forest birds indicates that either cryptic species breaks in eastern North America are still undiscovered, or another factor, such as divergent natural selection, high migratory connectivity, or interspecific competition, played a role in their divergence.


2019 ◽  
Author(s):  
Russell B. Corbett-Detig ◽  
Iskander Said ◽  
Maria Calzetta ◽  
Max Genetti ◽  
Jakob McBroome ◽  
...  

AbstractChromosomal inversions are fundamental drivers of genome evolution. In the main afro-tropical malaria vector species, belonging to the Anopheles gambiae species complex, inversions play an important role in local adaptation and have a rich history of cytological study. Despite the importance and ubiquity of some chromosomal inversions across the species complex, inversion breakpoints are often challenging to map molecularly due to the presence of large repetitive regions. Here, we develop an approach that uses Hi-C sequencing data to molecularly fine-map the breakpoints of inversions 2Rbc and 2Rd in A. coluzzii. We found that inversion breakpoints occur in large repetitive regions, and strikingly among three inversions analyzed, two breakpoints appear to be reused in two separate inversions. Additionally, we use heterozygous individuals to quantitatively investigate somatic pairing disruption in the regions immediately surrounding inversion breakpoints, and we find that pairing disruption is undetectable beyond approximately 250 Kb from the inversion breakpoints.


Sign in / Sign up

Export Citation Format

Share Document