scholarly journals A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq

PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0179717 ◽  
Author(s):  
Jun Wang ◽  
Zhilan Wang ◽  
Xiaofen Du ◽  
Huiqing Yang ◽  
Fang Han ◽  
...  
BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaomei Fang ◽  
Kongjun Dong ◽  
Xiaoqin Wang ◽  
Tianpeng Liu ◽  
Jihong He ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Huifang Xie ◽  
Junliang Hou ◽  
Nan Fu ◽  
Menghan Wei ◽  
Yunfei Li ◽  
...  

Abstract Background Foxtail millet (Setaria italica) is one of the oldest domesticated crops and has been considered as an ideal model plant for C4 grasses. It has abundant type of anther and hull colors which is not only a most intuitive morphological marker for color selection in seed production, but also has very important biological significance for the study of molecular mechanism of regulating the synthesis and metabolism of flavonoids and lignin. However, only a few genetic studies have been reported for anther color and hull color in foxtail millet. Results Quantitative trait loci (QTL) analysis for anther color and hull color was conducted using 400 F6 and F7 recombinant inbreed lines (RILs) derived from a cross between parents Yugu18 and Jigu19. Using restriction-site associated DNA sequencing, 43,001 single-nucleotide polymorphisms (SNPs) and 3,022 indels were identified between both the parents and the RILs. A total of 1,304 bin markers developed from the SNPs and indels were used to construct a genetic map that spanned 2196 cM of the foxtail millet genome with an average of 1.68 cM/bin. Combined with this genetic map and the phenotypic data observed in two locations for two years, two QTL located on chromosome 6 (Chr6) in a 1.215-Mb interval (33,627,819–34,877,940 bp) for anther color (yellow - white) and three QTL located on Chr1 in a 6.23-Mb interval (1–6,229,734 bp) for hull color (gold-reddish brown) were detected. To narrow the QTL regions identified from the genetic map and QTL analysis, we developed a new method named “inconsistent rate analysis” and efficiently narrowed the QTL regions of anther color into a 60-kb interval (34.13–34.19 Mb) in Chr6, and narrowed the QTL regions of hull color into 70-kb (5.43–5.50 Mb) and 30-kb (5.69–5.72 Mb) intervals in Chr1. Two genes (Seita.6G228600.v2.2 and Seita.6G228700.v2.2) and a cinnamyl alcohol dehydrogenase (CAD) gene (Seita.1G057300.v2.2) with amino acid changes between the parents detected by whole-genome resequencing were identified as candidate genes for anther and hull color, respectively. Conclusions This work presents the related QTL and candidate genes of anther and hull color in foxtail millet and developed a new method named inconsistent rate analysis to detect the chromosome fragments linked with the quality trait in RILs. This is the first study of the QTL related to hull color in foxtail millet and clarifying that the CAD gene (Seita.1G057300.v2.2) is the key gene responsible for this trait. It lays the foundation for further cloning of the functional genes and provides a powerful tool to detect the chromosome fragments linked with quality traits in RILs.


2019 ◽  
Vol 99 (5) ◽  
pp. 599-610
Author(s):  
Junhuan Zhang ◽  
Haoyuan Sun ◽  
Li Yang ◽  
Fengchao Jiang ◽  
Meiling Zhang ◽  
...  

A high-density genetic map of apricot (Prunus armeniaca L.) was constructed using an F1 population constructed by crossing two main Chinese cultivars ‘Chuanzhihong’ and ‘Luotuohuang’, coupled with a recently developed reduced representation library (RRL) sequencing. The average sequencing depth was 38.97 in ‘Chuanzhihong’ (female parent), 33.05 in ‘Luotuohuang’ (male parent), and 8.91 in each progeny. Based on the sequencing data, 12 451 polymorphic markers were developed and used in the construction of the genetic linkage map. The final map of apricot comprised eight linkage groups, including 1991 markers, and covered 886.25 cM of the total map length. The average distance between adjacent markers was narrowed to 0.46 cM. Gaps larger than 5 cM only accounted for <0.33%. To our knowledge, this map is the densest genetic linkage map that is currently available for apricot research. It is a valuable linkage map for quantitative trait loci (QTLs) identification of important agronomic traits. Moreover, the high marker density and well-ordered markers that this linkage map provides will be useful for molecular breeding of apricot as well. In this study, we applied this map in the QTL analysis of an important agronomic trait, pistil abortion. Several QTLs were detected and mapped respectively to the middle regions of LG5 (51.005∼59.4 cM) and LG6 (72.884∼76.562 cM), with nine SLAF markers closely linked to pistil abortion. The high-density genetic map and QTLs detected in this study will facilitate marker-assisted breeding and apricot genomic study.


2020 ◽  
pp. 121-126
Author(s):  
Meiling Gao ◽  
Xiaoxue Liang ◽  
Yu Guo ◽  
Yanlin Zhang ◽  
Yue Gao ◽  
...  

2019 ◽  
Vol 257 ◽  
pp. 108734 ◽  
Author(s):  
Gerardo Nuñez-Lillo ◽  
Cristóbal Balladares ◽  
Catalina Pavez ◽  
Claudio Urra ◽  
Dayan Sanhueza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document