scholarly journals High-density genetic map and QTL analysis of soluble solid content, maturity date, and mealiness in peach using genotyping by sequencing

2019 ◽  
Vol 257 ◽  
pp. 108734 ◽  
Author(s):  
Gerardo Nuñez-Lillo ◽  
Cristóbal Balladares ◽  
Catalina Pavez ◽  
Claudio Urra ◽  
Dayan Sanhueza ◽  
...  
2019 ◽  
Vol 14 (7) ◽  
pp. 649-657 ◽  
Author(s):  
Li Li ◽  
Jiemin Li ◽  
Jian Sun ◽  
Ping Yi ◽  
Changbao Li ◽  
...  

Background: Phospholipase D (PLD)is closely related to browning and senescence of postharvest longan fruit. Objective: This study investigated the effects of 2-butanol (a PLD inhibitor) on the expression and regulation of PLD during storage of longan fruit at a low temperature. Methods: Senescence-related quality indices showed that the 2-butanol-treated fruit presented lower pericarp browning index, pulp breakdown index and total soluble solid value than the untreated fruit. Results: The fruit treated by 60 µL/L 2-butanol exhibited the strongest inhibition on senescence, which significantly delayed changes in weight, titratable acidity content, total soluble solid content and ascorbic acid content. This treatment maintained a high level of total phenolic content and caused significant inhibition on pericarp browning and pulp breakdown. Through ELISA method, 60 µL/L 2-butanol treatment also reduced PLD activity. Real-time RT-PCR (RT-qPCR) results showed that PLD mRNA expression level was inhibited by 60 µL/L 2-butanol within 15 days. Western-blotting results further confirmed the differential expression of PLD during storage, and a relatively higher expression for PLD protein was found in control compared to the 2-butanoltreated fruit during 15-d storage. Conclusion: These results provided a scientific basis and reference to further investigating postharvest longan quality maintenance by regulating the PLD gene expression.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 449
Author(s):  
Camilo Gutiérrez-Jara ◽  
Cristina Bilbao-Sainz ◽  
Tara McHugh ◽  
Bor-Sen Chiou ◽  
Tina Williams ◽  
...  

The cracking of sweet cherries causes significant crop losses. Sweet cherries (cv. Bing) were coated by electro-spraying with an edible nanoemulsion (NE) of alginate and soybean oil with or without a CaCl2 cross-linker to reduce cracking. Coated sweet cherries were stored at 4 °C for 28 d. The barrier and fruit quality properties and nutritional values of the coated cherries were evaluated and compared with those of uncoated sweet cherries. Sweet cherries coated with NE + CaCl2 increased cracking tolerance by 53% and increased firmness. However, coated sweet cherries exhibited a 10% increase in water loss after 28 d due to decreased resistance to water vapor transfer. Coated sweet cherries showed a higher soluble solid content, titratable acidity, antioxidant capacity, and total soluble phenolic content compared with uncoated sweet cherries. Therefore, the use of the NE + CaCl2 coating on sweet cherries can help reduce cracking and maintain their postharvest quality.


Sign in / Sign up

Export Citation Format

Share Document