scholarly journals Novel subgroups of attention-deficit/hyperactivity disorder identified by topological data analysis and their functional network modular organizations

PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182603 ◽  
Author(s):  
Sunghyon Kyeong ◽  
Jae-Jin Kim ◽  
Eunjoo Kim
2019 ◽  
Author(s):  
Zeus Gracia-Tabuenca ◽  
Juan Carlos Díaz-Patiño ◽  
Isaac Arelio ◽  
Sarael Alcauter

AbstractThe functional organization of the brain network (connectome) has been widely studied as a graph; however, methodological issues may affect the results, such as the brain parcellation scheme or the selection of a proper threshold value. Instead of exploring the brain in terms of a static connectivity threshold, this work explores its algebraic topology as a function of the filtration value (i.e., the connectivity threshold), a process termed the Rips filtration in Topological Data Analysis. Specifically, we characterized the transition from all nodes being isolated to being connected into a single component as a function of the filtration value, in a public dataset of children with attention-deficit/hyperactivity disorder (ADHD) and typically developing children. Results were highly congruent when using four different brain segmentations (atlases), and exhibited significant differences for the brain topology of children with ADHD, both at the whole brain network and at the functional sub-network levels, particularly involving the frontal lobe and the default mode network. Therefore, this approach may contribute to identify the neurophysio-pathology of ADHD, reducing the bias of connectomics-related methods.HighlightsTopological Data Analysis was implemented in functional connectomes.Betti curves were assessed based on the area under the curve, slope and kurtosis.The explored variables were robust along four different brain atlases.ADHD showed lower areas, suggesting decreased functional segregation.Frontal and default mode networks showed the greatest differences between groups.Graphical Abstract


2013 ◽  
Vol 74 (8) ◽  
pp. 623-632 ◽  
Author(s):  
Adriana Di Martino ◽  
Xi-Nian Zuo ◽  
Clare Kelly ◽  
Rebecca Grzadzinski ◽  
Maarten Mennes ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260295
Author(s):  
Dongha Lee ◽  
Elizabeth Quattrocki Knight ◽  
Hyunjoo Song ◽  
Saebyul Lee ◽  
Chongwon Pae ◽  
...  

The heterogeneous presentation of inattentive and hyperactive-impulsive core symptoms in attention deficit hyperactivity disorder (ADHD) warrants further investigation into brain network connectivity as a basis for subtype divisions in this prevalent disorder. With diffusion and resting-state functional magnetic resonance imaging data from the Healthy Brain Network database, we analyzed both structural and functional network efficiency and structure-functional network (SC-FC) coupling at the default mode (DMN), executive control (ECN), and salience (SAN) intrinsic networks in 201 children diagnosed with the inattentive subtype (ADHD-I), the combined subtype (ADHD-C), and typically developing children (TDC) to characterize ADHD symptoms relative to TDC and to test differences between ADHD subtypes. Relative to TDC, children with ADHD had lower structural connectivity and network efficiency in the DMN, without significant group differences in functional networks. Children with ADHD-C had higher SC-FC coupling, a finding consistent with diminished cognitive flexibility, for all subnetworks compared to TDC. The ADHD-C group also demonstrated increased SC-FC coupling in the DMN compared to the ADHD-I group. The correlation between SC-FC coupling and hyperactivity scores was negative in the ADHD-I, but not in the ADHD-C group. The current study suggests that ADHD-C and ADHD-I may differ with respect to their underlying neuronal connectivity and that the added dimensionality of hyperactivity may not explain this distinction.


Sign in / Sign up

Export Citation Format

Share Document