scholarly journals A non-linear data mining parameter selection algorithm for continuous variables

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0187676 ◽  
Author(s):  
Peyman Tavallali ◽  
Marianne Razavi ◽  
Sean Brady
Author(s):  
Thorsten Laude ◽  
Jan Tumbrägel ◽  
Marco Munderloh ◽  
Jörn Ostermann

AbstractIntra coding is an essential part of all video coding algorithms and applications. Additionally, intra coding algorithms are predestined for an efficient still image coding. To overcome limitations in existing intra coding algorithms (such as linear directional extrapolation, only one direction per block, small reference area), we propose non-linear Contour-based Multidirectional Intra Coding. This coding mode is based on four different non-linear contour models, on the connection of intersecting contours and on a boundary recall-based contour model selection algorithm. The different contour models address robustness against outliers for the detected contours and evasive curvature changes. Additionally, the information for the prediction is derived from already reconstructed pixels in neighboring blocks. The achieved coding efficiency is superior to those of related works from the literature. Compared with the closest related work, BD rate gains of 2.16% are achieved on average.


2015 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Niklas Andersson ◽  
Per-Ola Larsson ◽  
Johan Åkesson ◽  
Niclas Carlsson ◽  
Staffan Skålén ◽  
...  

A polyethylene plant at Borealis AB is modelled in the Modelica language and considered for parameter estimations at grade transitions. Parameters have been estimated for both the steady-state and the dynamic case using the JModelica.org platform, which offers tools for steady-state parameter estimation and supports simulation with parameter sensitivies. The model contains 31 candidate parameters, giving a huge amount of possible parameter combinations. The best parameter sets have been chosen using a parameter-selection algorithm that identified parameter sets with poor numerical properties. The parameter-selection algorithm reduces the number of parameter sets that is necessary to explore. The steady-state differs from the dynamic case with respect to parameter selection. Validations of the parameter estimations in the dynamic case show a significant reduction in an objective value used to evaluate the quality of the solution from that of the nominal reference, where the nominal parameter values are used.


2013 ◽  
Vol 2 (4) ◽  
pp. 33-46 ◽  
Author(s):  
P. K. Nizar Banu ◽  
H. Hannah Inbarani

As the micro array databases increases in dimension and results in complexity, identifying the most informative genes is a challenging task. Such difficulty is often related to the huge number of genes with very few samples. Research in medical data mining addresses this problem by applying techniques from data mining and machine learning to the micro array datasets. In this paper Unsupervised Tolerance Rough Set based Quick Reduct (U-TRS-QR), a diverse feature selection algorithm, which extends the existing equivalent rough sets for unsupervised learning, is proposed. Genes selected by the proposed method leads to a considerably improved class predictions in wide experiments on two gene expression datasets: Brain Tumor and Colon Cancer. The results indicate consistent improvement among 12 classifiers.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350027
Author(s):  
JAGANATHAN PALANICHAMY ◽  
KUPPUCHAMY RAMASAMY

Feature selection is essential in data mining and pattern recognition, especially for database classification. During past years, several feature selection algorithms have been proposed to measure the relevance of various features to each class. A suitable feature selection algorithm normally maximizes the relevancy and minimizes the redundancy of the selected features. The mutual information measure can successfully estimate the dependency of features on the entire sampling space, but it cannot exactly represent the redundancies among features. In this paper, a novel feature selection algorithm is proposed based on maximum relevance and minimum redundancy criterion. The mutual information is used to measure the relevancy of each feature with class variable and calculate the redundancy by utilizing the relationship between candidate features, selected features and class variables. The effectiveness is tested with ten benchmarked datasets available in UCI Machine Learning Repository. The experimental results show better performance when compared with some existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document