scholarly journals Genome-wide recombination rate variation in a recombination map of cotton

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0188682 ◽  
Author(s):  
Chao Shen ◽  
Ximei Li ◽  
Ruiting Zhang ◽  
Zhongxu Lin
2020 ◽  
Author(s):  
Martin Johnsson ◽  
Andrew Whalen ◽  
Roger Ros-Freixedes ◽  
Gregor Gorjanc ◽  
Ching-Yi Chen ◽  
...  

AbstractBackgroundIn this paper, we estimated recombination rate variation within the genome and between individuals in the pig using multiocus iterative peeling for 150,000 pigs across nine genotyped pedigrees. We used this to estimate the heritability of recombination and perform a genome-wide association study of recombination in the pig.ResultsOur results confirmed known features of the pig recombination landscape, including differences in chromosome length, and marked sex differences. The recombination landscape was repeatable between lines, but at the same time, the lines also showed differences in average genome-wide recombination rate. The heritability of genome-wide recombination was low but non-zero (on average 0.07 for females and 0.05 for males). We found three genomic regions associated with recombination rate, one of them harbouring the RNF212 gene, previously associated with recombination rate in several other species.ConclusionOur results from the pig agree with the picture of recombination rate variation in vertebrates, with low but nonzero heritability, and a major locus that is homologous to one detected in several other species. This work also highlights the utility of using large-scale livestock data to understand biological processes.


2012 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Lionel Guy ◽  
Björn Nystedt ◽  
Yu Sun ◽  
Kristina Näslund ◽  
Eva C Berglund ◽  
...  

2020 ◽  
Author(s):  
Susan E. Johnston ◽  
Martin A. Stoffel ◽  
Josephine M. Pemberton

AbstractMeiotic recombination is a ubiquitous feature of sexual reproduction, ensuring proper disjunction of homologous chromosomes, and creating new combinations of alleles upon which selection can act. By identifying the genetic drivers of recombination rate variation, we can begin to understand its evolution. Here, we revisit an analysis investigating the genetic architecture of gamete autosomal crossover counts (ACC) in a wild population of Soay sheep (Ovis aries) using a much larger dataset (increasing from 3,300 to 7,235 gametes and from ∼39,000 to ∼415,000 SNPs for genome-wide association analysis). Animal models fitting genomic relatedness confirmed that ACC was heritable in both females (h2 = 0.18) and males (h2 = 0.12). Genome-wide association studies identified two regions associated with ACC variation. A region on chromosome 6 containing RNF212 explained 46% of heritable variation in female ACC, but was not associated with male ACC, confirming the previous finding. A region on chromosome 7 containing RNF212B explained 20-25% of variation in ACC in both males and females. Both RNF212 and RNF212B have been repeatedly associated with recombination rate in other mammal species. These findings confirm that moderate to large effect loci can underpin ACC variation in wild mammals, and provide a foundation for further studies on the evolution of recombination rates.


Author(s):  
Tom R. Booker ◽  
Sam Yeaman ◽  
Michael C. Whitlock

AbstractGenome scans can potentially identify genetic loci involved in evolutionary processes such as local adaptation and gene flow. Here, we show that recombination rate variation across a neutrally evolving genome gives rise to mixed sampling distributions of mean FST, a common population genetic summary statistic. In particular, we show that in regions of low recombination the distribution of estimates have more variance and a longer tail than in more highly recombining regions. Determining outliers from the genome-wide distribution without taking local recombination rate into consideration may therefore increase the frequency of false positives in low recombination regions and be overly conservative in more highly recombining ones. We perform genome-scans on simulated and empirical Drosophila melanogaster datasets and, in both cases, find patterns consistent with this neutral model. Similar patterns are observed for other summary statistics used to capture variation in the coalescent process. Linked selection, particularly background selection, is often invoked to explain heterogeneity in across the genome, but here we point out that even under neutrality, statistical artefacts can arise due to variation in recombination rate. Our results highlight a flaw in the design of genome scan studies and suggest that without estimates of local recombination rate, interpreting the genomic landscape of any summary statistic that captures variation in the coalescent process will be very difficult.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 581-588
Author(s):  
Mohamed A F Noor ◽  
Aimee L Cunningham ◽  
John C Larkin

Abstract We examine the effect of variation in gene density per centimorgan on quantitative trait locus (QTL) mapping studies using data from the Drosophila melanogaster genome project and documented regional rates of recombination. There is tremendous variation in gene density per centimorgan across this genome, and we observe that this variation can cause systematic biases in QTL mapping studies. Specifically, in our simulated mapping experiments of 50 equal-effect QTL distributed randomly across the physical genome, very strong QTL are consistently detected near the centromeres of the two major autosomes, and few or no QTL are often detected on the X chromosome. This pattern persisted with varying heritability, marker density, QTL effect sizes, and transgressive segregation. Our results are consistent with empirical data collected from QTL mapping studies of this species and its close relatives, and they explain the “small X-effect” that has been documented in genetic studies of sexual isolation in the D. melanogaster group. Because of the biases resulting from recombination rate variation, results of QTL mapping studies should be taken as hypotheses to be tested by additional genetic methods, particularly in species for which detailed genetic and physical genome maps are not available.


2018 ◽  
Author(s):  
Ahmed R. Hasan ◽  
Rob W. Ness

AbstractRecombination confers a major evolutionary advantage by breaking up linkage disequilibrium (LD) between harmful and beneficial mutations and facilitating selection. Here, we use genome-wide patterns of LD to infer fine-scale recombination rate variation in the genome of the model green alga Chlamydomonas reinhardtii and estimate rates of LD decay across the entire genome. We observe recombination rate variation of up to two orders of magnitude, finding evidence of recombination hotspots playing a role in the genome. Recombination rate is highest just upstream of genic regions, suggesting the preferential targeting of recombination breakpoints in promoter regions. Furthermore, we observe a positive correlation between GC content and recombination rate, suggesting a role for GC-biased gene conversion or selection on base composition within the GC-rich genome of C. reinhardtii. We also find a positive relationship between nucleotide diversity and recombination, consistent with widespread influence of linked selection in the genome. Finally, we use estimates of the effective rate of recombination to calculate the rate of sex that occurs in natural populations of this important model microbe, estimating a sexual cycle roughly every 770 generations. We argue that the relatively infrequent rate of sex and large effective population size creates an population genetic environment that increases the influence of linked selection on the genome.


Sign in / Sign up

Export Citation Format

Share Document