scholarly journals Dexamethasone counteracts hepatic inflammation and oxidative stress in cholestatic rats via CAR activation

PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0204336 ◽  
Author(s):  
Daniela Gabbia ◽  
Luisa Pozzo ◽  
Giorgia Zigiotto ◽  
Marco Roverso ◽  
Diana Sacchi ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mihiri Goonetilleke ◽  
Nathan Kuk ◽  
Jeanne Correia ◽  
Alex Hodge ◽  
Gregory Moore ◽  
...  

Abstract Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


2006 ◽  
Vol 44 ◽  
pp. S46
Author(s):  
C. Bertolani ◽  
P. Sancho-Bru ◽  
R. Bataller ◽  
E. Zamara ◽  
P. Failli ◽  
...  

2020 ◽  
Author(s):  
Mihiri Goonetilleke ◽  
Nathan Kuk ◽  
Jeanne Correia ◽  
Alex Hodge ◽  
Gregory Moore ◽  
...  

Abstract Background: Non-alcoholic steatohepatitis (NASH) is the most common liver disease globally and can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continuous progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that the interaction between liver progenitor cells (LPCs) plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH.Methods: Experimental NASH was induced in C57BL/6J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured.Results: hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNb in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation.Conclusions: Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation.


Life Sciences ◽  
2021 ◽  
Vol 270 ◽  
pp. 119131
Author(s):  
Jianbin Zhang ◽  
Daixi Jiang ◽  
Shuangzhe Lin ◽  
Yuqing Cheng ◽  
Jiaxing Pan ◽  
...  

2021 ◽  
Vol 139 ◽  
pp. 111588
Author(s):  
Abhishek Kumar ◽  
Nikhat J. Siddiqi ◽  
Sara T. Alrashood ◽  
Haseeb A. Khan ◽  
Anchal Dubey ◽  
...  

Author(s):  
Hasan Haci Yeter ◽  
Berfu Korucu ◽  
Elif Burcu Bali ◽  
Ulver Derici

Abstract. Background: The pathophysiological basis of chronic kidney disease and its complications, including cardiovascular disease, are associated with chronic inflammation and oxidative stress. We investigated the effects of active vitamin D (calcitriol) and synthetic vitamin D analog (paricalcitol) on oxidative stress in hemodialysis patients. Methods: This cross-sectional study was composed of 83 patients with a minimum hemodialysis vintage of one year. Patients with a history of any infection, malignancy, and chronic inflammatory disease were excluded. Oxidative markers (total oxidant and antioxidant status) and inflammation markers (C-reactive protein and interleukin-6) were analyzed. Results: A total of 47% (39/83) patients were using active or analog vitamin D. Total antioxidant status was significantly higher in patients with using active or analog vitamin D than those who did not use (p = 0.006). Whereas, total oxidant status and oxidative stress index were significantly higher in patients with not using vitamin D when compared with the patients who were using vitamin D preparation (p = 0.005 and p = 0.004, respectively). On the other hand, total antioxidant status, total oxidant status, and oxidative stress index were similar between patients who used active vitamin D or vitamin D analog (p = 0.6; p = 0.4 and p = 0.7, respectively). Conclusion: The use of active or selective vitamin D analog in these patients decreases total oxidant status and increases total antioxidant status. Also, paricalcitol is as effective as calcitriol in decreasing total oxidant status and increasing total antioxidant status in patients with chronic kidney disease.


Sign in / Sign up

Export Citation Format

Share Document