scholarly journals Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system

PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0219332 ◽  
Author(s):  
Mohammad Aboulwafa ◽  
Zhongge Zhang ◽  
Milton H. Saier
1992 ◽  
Vol 70 (3-4) ◽  
pp. 242-246 ◽  
Author(s):  
J. W. Anderson ◽  
E. B. Waygood ◽  
M. H. Saier Jr. ◽  
J. Reizer

The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIAGlc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated Nδ1- and Nε2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.Key words: phosphoenolpyruvate:sugar phosphotransferase system, phosphoproteins, phosphohistidine, phosphorylation, sugar transport.


2007 ◽  
Vol 189 (13) ◽  
pp. 4603-4613 ◽  
Author(s):  
Birte Reichenbach ◽  
Daniel A. Breustedt ◽  
Jörg Stülke ◽  
Bodo Rak ◽  
Boris Görke

ABSTRACT The histidine protein (HPr) is the energy-coupling protein of the phosphoenolpyruvate (PEP)-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes sugar transport in many bacteria. In its functions, HPr interacts with a number of evolutionarily unrelated proteins. Mainly, it delivers phosphoryl groups from enzyme I (EI) to the sugar-specific transporters (EIIs). HPr proteins of different bacteria exhibit almost identical structures, and, where known, they use similar surfaces to interact with their target proteins. Here we studied the in vivo effects of the replacement of HPr and EI of Escherichia coli with the homologous proteins from Bacillus subtilis, a gram-positive bacterium. This replacement resulted in severe growth defects on PTS sugars, suggesting that HPr of B. subtilis cannot efficiently phosphorylate the EIIs of E. coli. In contrast, activation of the E. coli BglG regulatory protein by HPr-catalyzed phosphorylation works well with the B. subtilis HPr protein. Random mutations were introduced into B. subtilis HPr, and a screen for improved growth on PTS sugars yielded amino acid changes in positions 12, 16, 17, 20, 24, 27, 47, and 51, located in the interaction surface of HPr. Most of the changes restore intermolecular hydrophobic interactions and salt bridges normally formed by the corresponding residues in E. coli HPr. The residues present at the targeted positions differ between HPrs of gram-positive and -negative bacteria, but within each group they are highly conserved. Therefore, they may constitute a signature motif that determines the specificity of HPr for either gram-negative or -positive EIIs.


2019 ◽  
Author(s):  
Mohammad Aboulwafa ◽  
Zhongge Zhang ◽  
Milton H. Saier

AbstractThe multicomponent phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system (PTS) inEscherichia colitakes up sugar substrates and concomitantly phosphorylates them. We have recently provided evidence that many of the integral membrane PTS permeases interact with the fructose PTS (FruA/FruB) [1]. However, the biochemical and physiological significance of this finding was not known. We have carried out molecular genetic/biochemical/physiological studies that show that interactions of the fructose PTS often enhance, but sometimes inhibit the activities of other PTS transporters many fold, depending on the target PTS system under study. Thus, the glucose, mannose, mannitol and N- acetylglucosamine permeases exhibit enhancedin vivosugar transport and sometimesin vitroPEP-dependent sugar phosphorylation activities while the galactitol and trehalose systems show inhibited activities. This is observed when the fructose system is induced to high levels and prevented when thefruA/fruBgenes are deleted. Overexpression of thefruAand/orfruBgenes in the absence of fructose induction during growth also enhances the rates of uptake of other hexoses. The β-galactosidase activities ofman, mtl,andgat-lacZtranscriptional fusions and the sugar-specific transphosphorylation activities of these enzyme transporters were not affected either by frustose induction orfruABoverexpression, showing that the rates of synthesis and protein levels in the membrane of the target PTS permeases were not altered. We thus suggest that specific protein-protein interactions within the cytoplasmic membrane regulate transportin vivo(and sometimes the PEP-dependent phosphorylation activitiesin vitroof PTS permeases) in a physiologically meaningful way that may help to provide a hierarchy of preferred PTS sugars. These observations appear to be applicable in principle to other types of transport systems as well.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2029
Author(s):  
Kouya Hattori ◽  
Masahiro Akiyama ◽  
Natsumi Seki ◽  
Kyosuke Yakabe ◽  
Koji Hase ◽  
...  

While poorly-absorbed sugar alcohols such as sorbitol are widely used as sweeteners, they may induce diarrhea in some individuals. However, the factors which determine an individual’s susceptibility to sugar alcohol-induced diarrhea remain unknown. Here, we show that specific gut bacteria are involved in the suppression of sorbitol-induced diarrhea. Based on 16S rDNA analysis, the abundance of Enterobacteriaceae bacteria increased in response to sorbitol consumption. We found that Escherichia coli of the family Enterobacteriaceae degraded sorbitol and suppressed sorbitol-induced diarrhea. Finally, we showed that the metabolism of sorbitol by the E. coli sugar phosphotransferase system helped suppress sorbitol-induced diarrhea. Therefore, gut microbiota prevented sugar alcohol-induced diarrhea by degrading sorbitol in the gut. The identification of the gut bacteria which respond to and degrade sugar alcohols in the intestine has implications for microbiome science, processed food science, and public health.


Sign in / Sign up

Export Citation Format

Share Document