scholarly journals Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242428
Author(s):  
Amil Daraz ◽  
Suheel Abdullah Malik ◽  
Ihsan Ul Haq ◽  
Khan Bahadar Khan ◽  
Ghulam Fareed Laghari ◽  
...  

In this paper, a modified form of the Proportional Integral Derivative (PID) controller known as the Integral- Proportional Derivative (I-PD) controller is developed for Automatic Generation Control (AGC) of the two-area multi-source Interconnected Power System (IPS). Fitness Dependent Optimizer (FDO) algorithm is employed for the optimization of proposed controller with various performance criteria including Integral of Absolute Error (IAE), Integral of Time multiplied Absolute Error (ITAE), Integral of Time multiplied Square Error (ITSE), and Integral Square Error (ISE). The effectiveness of the proposed approach has been assessed on a two-area network with individual source including gas, hydro and reheat thermal unit and then collectively with all three sources. Further, to validate the efficacy of the proposed FDO based PID and I-PD controllers, comprehensive comparative performance is carried and compared with other controllers including Differential Evolution based PID (DE-PID) controller and Teaching Learning Based Optimization (TLBO) hybridized with Local Unimodal Sampling (LUS-PID) controller. The comparison of outcomes reveal that the proposed FDO based I-PD (FDO-I-PD) controller provides a significant improvement in respect of Overshoot (Osh), Settling time (Ts), and Undershoot (Ush). The robustness of an I-PD controller is also verified by varying parameter of the system and load variation.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Esha Gupta ◽  
Akash Saxena

This paper presents an application of the recently introduced Antlion Optimizer (ALO) to find the parameters of primary governor loop of thermal generators for successful Automatic Generation Control (AGC) of two-area interconnected power system. Two standard objective functions, Integral Square Error (ISE) and Integral Time Absolute Error (ITAE), have been employed to carry out this parameter estimation process. The problem is transformed in optimization problem to obtain integral gains, speed regulation, and frequency sensitivity coefficient for both areas. The comparison of the regulator performance obtained from ALO is carried out with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Gravitational Search Algorithm (GSA) based regulators. Different types of perturbations and load changes are incorporated to establish the efficacy of the obtained design. It is observed that ALO outperforms all three optimization methods for this real problem. The optimization performance of ALO is compared with other algorithms on the basis of standard deviations in the values of parameters and objective functions.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3325 ◽  
Author(s):  
Xilin Zhao ◽  
Zhenyu Lin ◽  
Bo Fu ◽  
Li He ◽  
Na Fang

High penetration of wind power in the modern power system renders traditional automatic generation control (AGC) methods more challenging, due to the uncertainty of the external environment, less reserve power, and small inertia constant of the power system. An improved AGC method named predictive optimal 2-degree-of-freedom proportion integral differential (PO-2-DOF-PID) is proposed in this paper, which wind farm will participate in the load frequency control process. Firstly, the mathematical model of the AGC system of multi-area power grid with penetration of wind power is built. Then, predictive optimal 2-degree-of-freedom PID controller is presented to improve the system robustness considering system uncertainties. The objective function is designed based on the wind speed and whether wind farm takes part in AGC or not. The controller solves the optimization problem through the predictive theory while taking into account given constraints. In order to obtain the predictive sequence of output of the whole system, the characteristic of the 2-DOF-PID controller is integrated in the system model. A three interconnected power system is introduced as an example to test the feasibility and effectiveness of the proposed method. When considering the penetration of wind power, two cases of high wind speed and low wind speed are analyzed. The simulation results indicate that the proposed method can effectively deal with the negative influence caused by wind power when wind power participates in AGC.


Author(s):  
Jagatheesan Kaliannan ◽  
Anand B ◽  
Nguyen Gia Nhu ◽  
Nilanjan Dey ◽  
Amira S. Ashour ◽  
...  

Each hydropower system incorporates with appropriate hydro turbine, and hydro governor unit. In the current work, an Automatic Generation Control (AGC) of two equal hydropower systems with Proportional-Integral-Derivative (PID) controller was investigated. The gain values of the PID controllers were tuned using Ant Colony Optimization (ACO) technique with one percent Step Load Perturbation (1% SLP) in area 1. The Integral Square Error (ISE), Integral Time Square Error (ITSE), Integral Absolute Error (IAE) and Integral Time Absolute Error (ITAE) were chosen as the objective function in order to optimize the controller's gain values. The experimental results reported that the IAE based PID controller improved the system performance compared to other objective functions during sudden load disturbance.


Sign in / Sign up

Export Citation Format

Share Document