scholarly journals Adapting gait with asymmetric visual feedback affects deadaptation but not adaptation in healthy young adults

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247706
Author(s):  
Sarah A. Brinkerhoff ◽  
Patrick G. Monaghan ◽  
Jaimie A. Roper

Split-belt treadmill walking allows researchers to understand how new gait patterns are acquired. Initially, the belts move at two different speeds, inducing asymmetric step lengths. As people adapt their gait on a split-belt treadmill, left and right step lengths become more symmetric over time. Upon returning to normal walking, step lengths become asymmetric in the opposite direction, indicating deadaptation. Then, upon re-exposure to the split belts, step length asymmetry is less than the asymmetry at the start of the initial exposure, indicating readaptation. Changes in step length symmetry are driven by changes in step timing and step position asymmetry. It is critical to understand what factors can promote step timing and position adaptation and therefore influence step length asymmetry. There is limited research regarding the role of visual feedback to improve gait adaptation. Using visual feedback to promote the adaptation of step timing or position may be useful of understanding temporal or spatial gait impairments. We measured gait adaptation, deadaptation, and readaptation in twenty-nine healthy young adults while they walked on a split-belt treadmill. One group received no feedback while adapting; one group received asymmetric real-time feedback about step timing while adapting; and the last group received asymmetric real-time feedback about step position while adapting. We measured step length difference (non-normalized asymmetry), step timing asymmetry, and step position asymmetry during adaptation, deadaptation, and readaptation on a split-belt treadmill. Regardless of feedback, participants adapted step length difference, indicating that walking with temporal or spatial visual feedback does not interfere with gait adaptation. Compared to the group that received no feedback, the group that received temporal feedback exhibited smaller early deadaptation step position asymmetry (p = 0.005). There was no effect of temporal or spatial feedback on step timing. The feedback groups adapted step timing and position similarly to walking without feedback. Future work should investigate whether asymmetric visual feedback also results in typical gait adaptation in populations with altered step timing or position control.

2020 ◽  
Vol 34 (10) ◽  
pp. 954-963
Author(s):  
Jana Seuthe ◽  
Nicholas D’Cruz ◽  
Pieter Ginis ◽  
Jos Steffen Becktepe ◽  
Burkhard Weisser ◽  
...  

Background Freezing of gait (FOG) in Parkinson’s disease (PD) is associated with gait asymmetry and switching difficulty. A split-belt treadmill may potentially address those deficits. Objective To investigate the immediate and retention effects of one-session split-belt treadmill training (SBT) in contrast to regular tied-belt treadmill training (TBT) on gait asymmetry and adaptation in people with PD and FOG (PD + FOG) and healthy controls (HC). Additionally, to investigate differential effects of 3 SBT protocols and compare different gait adaptation outcomes. Methods PD + FOG (n = 45) and HC (n = 36) were randomized to 1 of 3 SBT groups (belt speeds’ ratio 0.75:1; 0.5:1 or changing ratios) or TBT group. Participants were tested at Pre, Post, and Retention after one treadmill training session. Gait asymmetry was measured during a standardized adaptation test on the split-belt treadmill Results SBT proved beneficial for gait adaptation in PD + FOG and HC ( P < .0001); however, HC improved more. SBT with changing ratios demonstrated significant effects on gait adaptation from Pre to Post in PD + FOG, supported by strong effect sizes ( d = 1.14) and improvements being retained for 24 hours. Mean step length asymmetry during initial exposure was lower in HC compared with PD + FOG ( P = .035) and differentiated best between the groups. Conclusions PD + FOG improved gait adaptation after a single SBT session although effects were smaller than in HC. SBT with changing ratios was the most effective to ameliorate gait adaptation in PD + FOG. These promising results warrant future study on whether long-term SBT strengthens adaptation in PD + FOG and has potential to induce a better resilience to FOG. Clinical trial ID: NCT03725215.


Author(s):  
Santiago Canete ◽  
Daniel A. Jacobs

Abstract Background Self-paced treadmills (SPT) can provide an engaging setting for gait rehabilitation by responding directly to the user’s intent to modulate the external environment and internal effort. They also can improve gait analyses by allowing scientists and clinicians to directly measure the effect of an intervention on walking velocity. Unfortunately, many common SPT algorithms are not suitable for individuals with gait impairment because they are designed for symmetric gait patterns. When the user’s gait is asymmetric due to paresis or if it contains large accelerations, the performance is diminished. Creating and validating an SPT that is suitable for asymmetric gait will improve our ability to study rehabilitation interventions in populations with gait impairment. The objective of this study was to test and validate a novel self-paced treadmill on both symmetric and asymmetric gait patterns and evaluate differences in gait kinematics, kinetics, and muscle activity between fixed-speed and self-paced treadmill walking. Methods We collected motion capture, ground reaction force data, and muscle activity from 6 muscles in the dominant leg during walking from 8 unimpaired subjects. In the baseline condition, the subjects walked at 3 fixed-speeds normalized to their leg length as Froude numbers. We developed a novel kinematic method for increasing the accuracy of the user’s estimated walking velocity and compared our method against other published algorithms at each speed. Afterward, subjects walked on the SPT while matching their walking speed to a given target velocity using visual feedback of the treadmill speed. We evaluated the SPT by measuring steady-state error and the number of steps to reach the desired speed. We split the gait cycle into 7 phases and compared the kinematic, kinetic, and muscle activity between the fixed speed and self-paced mode in each phase. Then, we validated the performance of the SPT for asymmetric gait by having subjects walk on the SPT while wearing a locked-knee brace set to 0° on the non-dominant leg. Results Our SPT enabled controlled walking for both symmetric and asymmetric gait patterns. Starting from rest, subjects were able to control the SPT to reach the targeted speeds using visual feedback in 13–21 steps. With the locked knee brace, subjects controlled the treadmill with substantial step length and step velocity asymmetry. One subject was able to execute a step-to gait and halt the treadmill on heel-strikes with the braced leg. Our kinematic correction for step-length outperformed the competing algorithms by significantly reducing the velocity estimation error at the tested velocities. The joint kinematics, joint torques, and muscle activity were generally similar between fixed-speed and self-paced walking. Statistically significant differences were found in 5 of 63 tests for joint kinematics, 2 of 63 tests for joint torques, and 9 of 126 tests for muscle activity. The differences that were statistically significant were not found across all speeds and were generally small enough to be of limited clinical relevance. Conclusions We present a validated method for implementing a self-paced treadmill for asymmetric and symmetric gaits. As a result of the increased accuracy of our estimation algorithm, our SPT produced controlled walking without including a position feedback controller, thereby reducing the influence of the controller on measurements of the user’s true walking speed. Our method relies only on a kinematic correction to step length and step time which can support transfer to systems outside of the laboratory for symmetric and asymmetric gaits in clinical populations.


2000 ◽  
Vol 16 (4) ◽  
pp. 227-233
Author(s):  
You-Li Chou ◽  
Jia-Yuan You ◽  
Chii-Jeng Lin ◽  
Fong-Chin Su ◽  
Pei-Hsi Chou

ABSTRACTUpon encountering a wet or contaminated floor, people often modify their gait and posture to prevent themselves from slipping. This study was conducted to investigate the modification of gait patterns in healthy young adults as they approached and stepped on a slippery floor. Ten females and twelve males were instructed to walk at two different pacer speeds, 90 and 120steps/min, guided by a metronome, on a walkway with two forceplates placed at the center. During the step immediately prior to stepping on a forceplate with or without slippery disturbance, temporo-spatial parameters, selected kinematic parameters, and foot-floor reaction forces were evaluated in each cadence. The results showed that modifications of gait patterns for slip perturbation included shorter step length, increases of flexion angles of hip and knee joints,increases of plantarflexion angles of ankle joint with flattened foot, and decreases of the forward and backward groundreaction forces. However, it was found that such modifications for slip perturbation did not seem to efficiently prevent people from falling.


Author(s):  
Barbara Barros Carlos ◽  
Tommaso Sartor ◽  
Andrea Zanelli ◽  
Gianluca Frison ◽  
Wolfram Burgard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document