scholarly journals The naturally occurring radioactivity of ‘scalar energy’ pendants and concomitant radiation risk

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0250528
Author(s):  
Halmat Jalal Hassan ◽  
Suhairul Hashim ◽  
Mohamad Syazwan Mohd Sanusi ◽  
Mohamad Hidayat Jamal ◽  
Sitti Asmah Hassan ◽  
...  

Forming part of a study of radiological risk arising from use of radioactive consumer products, investigation is made of pendants containing naturally occurring radioactive material. Based on use of gamma-ray spectrometry and Monte Carlo (MC) simulations, the study investigates commercially available ‘scalar energy pendants’. The doses from these have been simulated using MIRD5 mathematical phantoms, evaluation being made of dose conversion factors (DCFs) and organ dose. Metallic pendants code MP15 were found to contain the greatest activity, at 7043 ± 471 Bq from 232Th, while glass pendants code GP11 were presented the greatest 238U and 40K activity, at 1001 ± 172 and 687 ± 130 Bq respectively. MP15 pendants offered the greatest percentage concentrations of Th, Ce, U and Zr, with means of 25.6 ± 0.06, 5.6 ± 0.005, 1.03 ± 0.04 and 28.5 ± 0.08 respectively, giving rise to an effective dose of 2.8 mSv for a nominal wearing period of 2000 h. Accordingly, these products can give rise to annual doses in excess of the public limit of 1 mSv.

Author(s):  
Halmat Jalal Hassan ◽  
Suhairul Hashim ◽  
Noor Zati Hani Abu Hanifah ◽  
Sib Krishna Ghoshal ◽  
Mohamad Syazwan Mohd Sanusi ◽  
...  

A particular category of jewelry is one involving bracelets and necklaces that are deliberately made to contain naturally occurring radioactive material (NORM)—purveyors making unsubstantiated claims for health benefits from the release of negative ions. Conversely, within the bounds of the linear no-threshold model, long-term use presents a radiological risk to wearers. Evaluation is conducted herein of the radiological risk arising from wearing these products and gamma-ray spectrometry is used to determine the radioactivity levels and annual effective dose of 15 commercially available bracelets (samples B1 to B15) and five necklaces (samples N16 to N20). Various use scenarios are considered; a Geant4 Monte Carlo (Geant4 MC) simulation is also performed to validate the experimental results. The dose conversion coefficient for external radiation and skin equivalent doses were also evaluated. Among the necklaces, sample N16 showed the greatest levels of radioactivity, at 246 ± 35, 1682 ± 118, and 221 ± 40 Bq, for 238U, 232Th, and 40K, respectively. For the bracelets, for 238U and 232Th, sample B15 displayed the greatest level of radioactivity, at 146 ± 21 and 980 ± 71 Bq, respectively. N16 offered the greatest percentage concentrations of U and Th, with means of 0.073 ± 0.0002% and 1.51 ± 0.0015%, respectively, giving rise to an estimated annual effective dose exposure of 1.22 mSv, substantially in excess of the ICRP recommended limit of 1 mSv/year.


2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 84-97
Author(s):  
J.F. Lecomte

The International Commission on Radiological Protection (ICRP) recently issued ICRP Publication 142 on radiological protection from naturally occurring radioactive material (NORM) in industrial processes. Industries involving NORM may give rise to multiple hazards, and the radiological hazard is not necessarily dominant. They are diverse and may involve exposure of people and the environment where protective actions need to be considered. In some cases, there is a potential for significant routine exposure of workers and members of the public. Releases of large volumes of NORM may also result in detrimental effects on the environment from radiological and non-radiological constituents. However, industries involving NORM present no real prospect of a radiological emergency leading to tissue reactions or immediate danger for life. Radiological protection in these industries can be appropriately addressed on the basis of the principles of justification of the actions taken and optimisation of protection using reference levels. An integrated and graded approach is recommended for the protection of workers, the public, and the environment, where consideration of non-radiological hazards is integrated with the radiological hazards, and the approach to protection is optimised (graded) so that the use of various radiological protection programme elements is consistent with the hazards while not imposing unnecessary burdens.


2021 ◽  
Vol 11 (12) ◽  
pp. 5412
Author(s):  
Halmat Jalal Hassan ◽  
Suhairul Hashim ◽  
Noor Zati Hani Abu Hanifah ◽  
Muhammad Fahmi Rizal Abdul Hadi ◽  
Mohamad Syazwan Mohd Sanusi ◽  
...  

The study investigates commercially available negative ion clothing, and evaluations are made using gamma-ray spectroscopy and Geant4 Monte Carlo simulations. Observed to contain naturally occurring radioactive material (NORM), evaluations are made of the radiological risk arising from the use of these as items of everyday wear, undergarments in particular. Organ doses from these were simulated using the MIRD5 mathematical female phantom, with the incorporation of dose conversion factors (DCFs). At 175 ± 26, 1732 ± 247, and 207 ± 38 Bq, for 238U, 232Th, and 40K respectively, item code S05 was found to possess the greatest activity, while item code S07 was shown to have the least activity, at 2 ± 0.5 and 15 ± 2 Bq, and again for 238U and 232Th, respectively. Sample code S11 recorded least activity, at 29 ± 5 Bq, for 40K. Among the clothing items, sample item code S05 offered the greatest concentrations of Th, U and Zr, with percentage means of 1.23 ± 0.1, 0.045 ± 0.001, and 1.29 ± 0.1, respectively, giving rise to an annual effective dose of 1.57 mSv/y assuming a nominal wearing period of 24 h per day. Accordingly, the annual public dose limit of 1 mSv can be exceeded by their use.


2020 ◽  
Vol 13 ◽  
pp. 262
Author(s):  
K. L. Karfopoulos ◽  
G. N. Papadakos ◽  
D. J. Karangelos ◽  
P. K. Rouni ◽  
N. P. Petropoulos ◽  
...  

It is estimated that until 1978 about 200000 lightning conductor rods with -a emitting sources attached to their end were installed worldwide. The sources were supposed to increase the lighting collection efficiency of these rods through the ionization of the surrounding air. Nevertheless, this improvement has never been established conclusively. Such devices are, in most cases, not accessible by the pub- lic; therefore, the dose to the population is considered insignificant. However, the possibility of radioactive material leakage, due to the source attachment failure, and the subsequent contamination of the surroundings that could lead to possible health risk of the public cannot be excluded. In this work, the case of 241Am contamination due to a lightning rod conductor failure is investigated. This contamination was accidentally detected on the surface soil around a laboratory building in the National Technical University of Athens Campus, during a routine in-situ gamma-ray measurement campaign that took place in 2003. A detailed survey revealed that this 241Am contamination was due to the leakage from two lightning rods on the building roof. Consequently the rods were removed from the building and the contamination pattern on the roof and on the surface soil around the building was examined in detail. From the results obtained so far it may be concluded that there exists well localized contamination on the roof and also around the building. It was established that the pathway through which contamination reached the ground was  the rainwater drainage system of the building. The gamma ray dose rate due to 241Am contamination found on the roof and on the surface soil is low compared to that due to its natural radioactivity and does not seem to pose any health risk to the people working in the building or to the public.


Sign in / Sign up

Export Citation Format

Share Document