scholarly journals High-frequency conductivity at Larmor-frequency in human brain using moving local window multilayer perceptron neural network

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251417
Author(s):  
Mun Bae Lee ◽  
Geon-Ho Jahng ◽  
Hyung Joong Kim ◽  
Oh-In Kwon

Magnetic resonance electrical properties tomography (MREPT) aims to visualize the internal high-frequency conductivity distribution at Larmor frequency using the B1 transceive phase data. From the magnetic field perturbation by the electrical field associated with the radiofrequency (RF) magnetic field, the high-frequency conductivity and permittivity distributions inside the human brain have been reconstructed based on the Maxwell’s equation. Starting from the Maxwell’s equation, the complex permittivity can be described as a second order elliptic partial differential equation. The established reconstruction algorithms have focused on simplifying and/or regularizing the elliptic partial differential equation to reduce the noise artifact. Using the nonlinear relationship between the Maxwell’s equation, measured magnetic field, and conductivity distribution, we design a deep learning model to visualize the high-frequency conductivity in the brain, directly derived from measured magnetic flux density. The designed moving local window multi-layer perceptron (MLW-MLP) neural network by sliding local window consisting of neighboring voxels around each voxel predicts the high-frequency conductivity distribution in each local window. The designed MLW-MLP uses a family of multiple groups, consisting of the gradients and Laplacian of measured B1 phase data, as the input layer in a local window. The output layer of MLW-MLP returns the conductivity values in each local window. By taking a non-local mean filtering approach in the local window, we reconstruct a noise suppressed conductivity image while maintaining spatial resolution. To verify the proposed method, we used B1 phase datasets acquired from eight human subjects (five subjects for training procedure and three subjects for predicting the conductivity in the brain).

2020 ◽  
Vol 44 (3) ◽  
pp. 241-249
Author(s):  
Yoshiaki Omura

While a visiting Professor at the University of Paris, VI (formerly Sorvonne) more than 40 years ago, the Author became very good friends with Dr. Paul Nogier who periodically gave seminars and workshops in Paris. After the author diagnosed his cervical problem & offered him simple help, Dr. Nogier asked the Author to present lectures and demonstrations on the effects of ear stimulation, namely the effects of acupuncture & electrical stimulation of the ear lobules. It is only now, in 2019 that we have discovered 2–5 minute high frequency stimulation of the ear lobule inhibits cancer activity for 1– 4 hours post stimulation. Although the procedure is extremely simple. First take optimal dose of Vitamin D3, which has the most essential 10 unique beneficial factors required for every human cell activity. Next, apply high frequency stimulation to ear lobule while the worst ear lobule is held by all fingers with vibrator directly touching the surface of the worst ear lobule, preferably after patient repeatedly takes optimal dose of Vitamin D3. When the worst ear lobule is held between thumb & index fingers and applying mechanical stimulation of 250 ~ 500 mechanical vibration/second for 2 ~ 5 minutes using an electrical vibrator, there is rapid disappearance of cancer activity in both the brain and rest of the body for short time duration 1 ~ 4 hours. The effect often increases by additional pressure by holding fingers. As of May 2019, the Author found that many people from various regions of the world developed early stages of multiple cancers. For evaluation of this study, U. S. patented Bi-Digital O-Ring Test (BDORT) was used which was developed by the Author while doing his Graduate experimental physics research at Colombia University. BDORT was found to be most essential for determining the beneficial effects as well as harmful effects of any substance or treatment. Using BDORT, Author was the first to recognize severe increasing mid-backache was an early sign of pancreatic cancer of President of New York State Board of Medicine after top pain specialists failed to detect the cause after 3 years of effort, while the BDORT showed early stages of cancer whereas conventional X-Ray of the pancreas did not show any cancer image until 2 months after Author detected with BDORT. For example, the optimal dose of the banana is usually about 2.0 - 2.5 millimeters cross section of the banana. A whole banana is more than 50 ~ 100 times the optimal dose. Any substance eaten in more than 25 times of its optimal dose becomes highly toxic and creates DNA mutations which can cause multiple malignancies in the presence of strong electro-magnetic field. With standard medication given by doctor, patients often become sick and they are unable to reduce body weight, unless medication is reduced or completely stopped. When the amount of zinc is very high, DNA often becomes unstable and multiple cancers can grow rapidly in the presence of strong electromagnetic field. Large amount of Vitamin C from regular orange or orange juice inhibit the most important Vitamin D3 effects. At least 3 kinds of low Vitamin C oranges will not inhibit Vitamin D3. Since B12 particularly methyl cobalamin which is a red small tablet is known to improve brain circulation very significantly we examined its effect within 20 seconds of oral intake we found the following very significant changes. Acetylcholine in both sides of the brain often increases over 4,500 ng. Longevity gene Sirtuin 1 level increases significantly for short time of few hours. Thymosin α1 and Thymosinβ4 both increase to over 1500 ng from 20 ng or less.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Müller ◽  
Janna Kuchinka ◽  
Thomas Heinze

Abstract Magnetic nanocomposites are a class of smart materials that have attracted recent interest as drug delivery systems or as medical implants. A new approach toward the biocompatible nanocomposites suitable for remote melting is presented. It is shown that magnetite nanoparticles (MNPs) can be embedded into a matrix of biocompatible thermoplastic dextran esters. For that purpose, fatty acid esters of dextran with adjustable melting points in the range of 30–140 °C were synthesized. Esterification of the polysaccharide by activation of the acid as iminium chlorides guaranteed mild reaction conditions leading to high-quality products as confirmed by Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy as well as by gel permeation chromatography (GPC). A method for the preparation of magnetically responsive bionanocomposites (BNCs) was developed consisting of combined dissolution/suspension of the dextran ester and hydrophobized MNPs in an organic solvent followed by homogenization with ultrasonication, casting of the solution, drying and melting of the composite for a defined shaping. This process leads to a uniform distribution of MNPs in BNC as revealed by scanning electron microscope (SEM). Samples of different geometries were exposed to high-frequency alternating magnetic field (AMF). It could be shown that defined remote melting of such biocompatible nanocomposites is possible for the first time. This may lead to a new class of magnetic remote-control systems, which are suitable for controlled release applications or self-healing materials. BNCs containing biocompatible dextran fatty acid ester melting close to human body temperature were prepared and loaded with Rhodamine B (RhB) or green fluorescent protein (GFP) as model drugs to evaluate their potential use as drug delivery system. The release of the model drugs from the magnetic BNC investigated under the influence of a high-frequency AMF (20 kA/m at 400 kHz) showed that on-demand release is realized by applying the external AMF. The BNC possessed a long-term stability (28 d) of the incorporated iron oxide particles after incubation in artificial body fluids. Temperature-dependent mobility investigations of MNP in the molten BNC were carried out by optical microscopy, magnetometry, alternating current (AC) susceptibility, and Mössbauer spectroscopy measurements. Optical microscopy shows a movement of agglomerates and texturing in the micrometer scale, whereas AC susceptometry and Mössbauer spectroscopy investigations reveal that the particles perform diffusive Brownian motion in the liquid polymer melt as separated particles rather than as large agglomerates. Furthermore, a texturing of MNP in the polymer matrix by a static magnetic field gradient was investigated. First results on the preparation of cross-linkable dextran esters are shown. Cross-linking after irradiation of the BNC prevents melting that can be used to influence texturing procedures.


Author(s):  
Belik Dmitry Vasilevich ◽  
Dmitriev Nikolay Alekseevich ◽  
Zinevskaya Maria Sergeevna ◽  
Pustovoy Sergey Alexandrovich ◽  
Kustov Iliya Nikolayevich ◽  
...  

2020 ◽  
Vol 65 (1) ◽  
pp. 95-104
Author(s):  
H. Wu ◽  
Y. L. Chang ◽  
Alexandr Babkin ◽  
Boyoung Lee

Sign in / Sign up

Export Citation Format

Share Document