scholarly journals Early alpha/beta oscillations reflect the formation of face-related expectations in the brain

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255116
Author(s):  
Marlen A. Roehe ◽  
Daniel S. Kluger ◽  
Svea C. Y. Schroeder ◽  
Lena M. Schliephake ◽  
Jens Boelte ◽  
...  

Although statistical regularities in the environment often go explicitly unnoticed, traces of implicit learning are evident in our neural activity. Recent perspectives have offered evidence that both pre-stimulus oscillations and peri-stimulus event-related potentials are reliable biomarkers of implicit expectations arising from statistical learning. What remains ambiguous, however, is the origination and development of these implicit expectations. To address this lack of knowledge and determine the temporal constraints of expectation formation, pre-stimulus increases in alpha/beta power were investigated alongside a reduction in the N170 and a suppression in peri-/post-stimulus gamma power. Electroencephalography was acquired from naive participants who engaged in a gender classification task. Participants were uninformed, that eight face images were sorted into four reoccurring pairs which were pseudorandomly hidden amongst randomly occurring face images. We found a reduced N170 for statistically expected images at left parietal and temporo-parietal electrodes. Furthermore, enhanced gamma power following the presentation of random images emphasized the bottom-up processing of these arbitrary occurrences. In contrast, enhanced alpha/beta power was evident pre-stimulus for expected relative to random faces. A particularly interesting finding was the early onset of alpha/beta power enhancement which peaked immediately after the depiction of the predictive face. Hence, our findings propose an approximate timeframe throughout which consistent traces of enhanced alpha/beta power illustrate the early prioritisation of top-down processes to facilitate the development of implicitly cued face-related expectations.

2019 ◽  
Vol 31 (4) ◽  
pp. 488-501 ◽  
Author(s):  
Takakuni Suzuki ◽  
Kaylin E. Hill ◽  
Belel Ait Oumeziane ◽  
Dan Foti ◽  
Douglas B. Samuel

2014 ◽  
Vol 13 (01) ◽  
pp. 19-34 ◽  
Author(s):  
Susana Silva ◽  
Fernando Barbosa ◽  
João Marques-Teixeira ◽  
Karl Magnus Petersson ◽  
São Luís Castro

1983 ◽  
Vol 17 (4) ◽  
pp. 307-318 ◽  
Author(s):  
H. G. Stampfer

This article suggests that the potential usefulness of event-related potentials in psychiatry has not been fully explored because of the limitations of various approaches to research adopted to date, and because the field is still undergoing rapid development. Newer approaches to data acquisition and methods of analysis, combined with closer co-operation between medical and physical scientists, will help to establish the practical application of these signals in psychiatric disorders and assist our understanding of psychophysiological information processing in the brain. Finally, it is suggested that psychiatrists should seek to understand these techniques and the data they generate, since they provide more direct access to measures of complex cerebral processes than current clinical methods.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3918 ◽  
Author(s):  
Goded Shahaf ◽  
Pora Kuperman ◽  
Yuval Bloch ◽  
Shahak Yariv ◽  
Yelena Granovsky

Migraine attacks can cause significant discomfort and reduced functioning for days at a time, including the pre-ictal and post-ictal periods. During the inter-ictsal period, however, migraineurs seem to function normally. It is puzzling, therefore, that event-related potentials of migraine patients often differ in the asymptomatic and inter-ictal period. Part of the electrophysiological dynamics demonstrated in the migraine cycle are attention related. In this pilot study we evaluated an easy-to-use new marker, the Brain Engagement Index (BEI), for attention monitoring during the migraine cycle. We sampled 12 migraine patients for 20 days within one calendar month. Each session consisted of subjects’ reports of stress level and migraine-related symptoms, and a 5 min EEG recording, with a 2-electrode EEG device, during an auditory oddball task. The first minute of the EEG sample was analyzed. Repetitive samples were also obtained from 10 healthy controls. The brain engagement index increased significantly during the pre-ictal (p ≈ 0.001) and the ictal (p ≈ 0.020) periods compared with the inter-ictal period. No difference was observed between the pre-ictal and ictal periods. Control subjects demonstrated intermediate Brain Engagement Index values, that is, higher than inter-ictal, yet lower than pre-ictal. Our preliminary results demonstrate the potential advantage of the use of a simple EEG system for improved prediction of migraine attacks. Further study is required to evaluate the efficacy of the Brain Engagement Index in monitoring the migraine cycle and the possible effects of interventions.


2020 ◽  
Author(s):  
Katja Junttila ◽  
Anna-Riikka Smolander ◽  
Reima Karhila ◽  
Anastasia Giannakopoulou ◽  
Maria Uther ◽  
...  

Learning is increasingly assisted by technology. Digital games may be useful for learning, especially in children. However, more research is needed to understand the factors that induce gaming benefits to cognition. In this study, we investigated the effectiveness of digital game-based learning approach in children by comparing the learning of foreign speech sounds and words in a digital game or a non-game digital application with equal amount of exposure and practice. To evaluate gaming-induced plastic changes in the brain function, we used the mismatch negativity (MMN) brain response that reflects the activation of long-term memory representations for speech sounds and words. We recorded auditory event-related potentials (ERPs) from 37 school-aged Finnish-speaking children before and after playing the “Say it again, kid!” (SIAK) language-learning game where they explored game boards, produced English words aloud, and got stars as feedback from an automatic speech recognizer to proceed in the game. The learning of foreign speech sounds and words was compared in two conditions embedded in the game: a game condition and a non-game condition with the same speech production task but lacking visual game elements and feedback. The MMN amplitude increased between the pre-measurement and the post-measurement for the word trained with the game but not for the word trained with the non-game condition, suggesting that the gaming intervention enhanced learning more than the non-game intervention. The results indicate that digital game-based learning can be beneficial for children’s language learning and that gaming elements per se, not just practise time, support learning.


Author(s):  
Adil Deniz Duru ◽  
Ali Bayram ◽  
Tamer Demiralp ◽  
Ahmet Ademoglu

Event-related potentials (ERP) are transient brain responses to cognitive stimuli, and they consist of several stationary events whose temporal frequency content can be characterized in terms of oscillations or rhythms. Precise localization of electrical events in the brain, based on the ERP data recorded from the scalp, has been one of the main challenges of functional brain imaging. Several currentDensity estimation techniques for identifying the electrical sources generating the brain potentials are developed for the so-called neuroelectromagnetic inverse problem in the last three decades (Baillet, Mosher, & Leahy, 2001; Koles, 1998; Michela, Murraya, Lantza, Gonzaleza, Spinellib, & Grave de Peraltaa, 2004; Scherg & von Cramon, 1986).


2001 ◽  
Vol 24 (5) ◽  
pp. 823-824 ◽  
Author(s):  
Márk Molnár

We discuss whether low-dimensional chaos and even nonlinear processes can be traced in the electrical activity of the brain. Experimental data show that the dimensional complexity of the EEG decreases during event-related potentials associated with cognitive effort. This probably represents increased nonlinear cooperation between different neural systems during sensory information processing.


1999 ◽  
Vol 354 (1387) ◽  
pp. 1307-1324 ◽  
Author(s):  
Anthony D. Wagner ◽  
Wilma Koutstaal ◽  
Daniel L. Schacter

To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event–related fMRI methods now allows for examination of trial–by–trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event–related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event–related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event–related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering.


Sign in / Sign up

Export Citation Format

Share Document