scholarly journals A simulation based large bus side slip and rollover threshold study in slope-curve section under adverse weathers

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256354
Author(s):  
Lin Tian ◽  
Yanfei Li ◽  
Jueshuai Li ◽  
Wenzhen Lv

To study the side slip and rollover threshold of large bus in slope–curve section under adverse weather, factors that affect the safety of large buses that run in slope–curve section, such as rain, snow, cross-wind environmental factors, and road geometry, were analyzed to obtain the friction coefficient of the road surface under different rainfall and snowfall intensities through field measurements and to determine the six-component force coefficient of wind that acts on large buses through wind tunnel tests. The force analysis of large bus in slope-curve section was carried out, and the mechanical equations of large bus under the limit conditions of sideslip and rollover in slope-curve section were established. TruckSim simulation test platform was used to establish a three-dimensional road model and large bus mechanical model at a design speed of 100 km/h. Input parameters, such as cross-wind speed and road friction coefficient, simulate the impact of wind-rain/snow coupling. Under the combined action of wind-rain/snow, the operation test of large bus in slope-curve section was carried out, and the key parameters and indicators of the sideslip and rollover of large bus in slope-curve section were outputted and analyzed. The sudden change point of lateral acceleration is the judging condition for sideslip of large bus in slope-curve section under different road friction coefficient (0.2–0.7), changing from 0.15m/s2 and stabilizing to 0.52 m/s2, and a 0N vertical reaction force of the inner tire is the critical judging condition for rollover under road friction coefficient0.8, and the operating speed thresholds were proposed under different road friction coefficient. This study is expected to provide theoretical support for the speed limit of large bus in slope-curve section under adverse weather.

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3816 ◽  
Author(s):  
Letian Gao ◽  
Lu Xiong ◽  
Xuefeng Lin ◽  
Xin Xia ◽  
Wei Liu ◽  
...  

The road friction coefficient is a key parameter for autonomous vehicles and vehicle dynamic control. With the development of autonomous vehicles, increasingly, more environmental perception sensors are being installed on vehicles, which means that more information can be used to estimate the road friction coefficient. In this paper, a nonlinear observer aided by vehicle lateral displacement information for estimating the road friction coefficient is proposed. First, the tire brush model is modified to describe the tire characteristics more precisely in high friction conditions using tire test data. Then, on the basis of vehicle dynamics and a kinematic model, a nonlinear observer is designed, and the self-aligning torque of the wheel, lateral acceleration, and vehicle lateral displacement are used to estimate the road friction coefficient during steering. Finally, slalom tests and DLC (Double Line Change) tests in high friction conditions are conducted to verify the proposed estimation algorithm. Test results showed that the proposed method performs well during steering and the estimated road friction coefficient converges to the reference value rapidly.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yanna Yin ◽  
Huiying Wen ◽  
Lu Sun ◽  
Wei Hou

According to the accident analysis of vehicles in the curve, the skidding, rollover, and lateral drift of vehicles are determined as means to evaluate the lateral stability of vehicles. The utility truck of rear-wheel drive (RWD) is researched, which is high accident rate. Human-vehicle-road simulation models are established by CarSim. Through the orthogonal experiment method, the effects of different road geometries, speed, and interaction factors between road geometries on vehicle lateral stability are studied. In this paper, skidding risk of the vehicle is characterized by the Side-way Force Coefficient (SFC). Rollover risk of the vehicle is characterized by lateral acceleration and the load transfer ratio. Lateral drift risk of the vehicle is characterized by the sideslip angle of wheels. The results of orthogonal analysis reveal that the maximum tire-road friction coefficient and speed are highly significant in skidding of the vehicle. The effects of the combination of horizontal alignment and superelevation on vehicle skidding are important. The effects of horizontal alignment and speed on vehicle rollover risk are highly significant. The effects of superelevation on vehicle rollover risk are significant. The effects of the interaction of horizontal alignment and superelevation are also important on vehicles’ rollover risk. The speed and the maximum tire-road friction coefficient have highly significant effect on the vehicle’s lateral drift. The superelevation has a significant effect on the vehicle’s lateral drift. The effects of the interaction of horizontal alignment and superelevation and longitudinal slope are also important on the lateral drift of the vehicle.


2014 ◽  
Vol 8 (1) ◽  
pp. 292-296
Author(s):  
Zhi-Guo Zhao ◽  
Min Chen ◽  
Nan Chen ◽  
Yong-Bing Zhao ◽  
Xin Chen

The lateral security of heavy vehicle in deteriorative weather is one of the main causes of accidents of vehicles on roads. Road safety has become a subject of great concern to institutions of higher education and scientific research institutions. There are important theoretical and practical significances to explore applicable and effective lateral safety warning methods of heavy vehicles. One of the purposes of this paper is to provide a good theoretical basis for the core technology of heavy vehicle safety features for our country's independent research and development. Aiming at the issue of lateral security of heavy vehicle for road conditions in deteriorative weather, this paper constructs the framework of the lateral security pre-warning system of heavy vehicles based on cooperative vehicle infrastructure. Moreover, it establishes vehicle lateral security statics model through analysis of the force of the car in the slope with section bending and states the parameters of vehicles for no rollover. The side slip is indexed to calculate critical speed of vehicles in a bend. This paper also analyzes the influence of road friction coefficient, the road gradient and the turning radius on the lateral security of the vehicle with critical speed on the asphalt pavement with surface conditions ranging from wet, dry, snowing or icy. The calculation results show that the bad weather road conditions, road friction coefficient and turning radius have obvious influence on the lateral security critical speed. Experimental results indicate that the critical speed error warning is within 4% and it meets the design requirements.


2021 ◽  
Vol 15 ◽  
Author(s):  
Gengxin Qi ◽  
Xiaobin Fan ◽  
Hao Li

Background: The development of the tire/road friction coefficient measurement and estimation system has far-reaching significance for the active electronic control safety system of automobiles and is one of the core technologies for autonomous driving in the future. Objective: Estimating the road friction coefficient accurately and in real-time has become the leading research direction. Researchers have used different tools and proposed different algorithms and patents. These methods are widely used to estimate the road friction coefficient or other related parameters. This paper gives a comprehensive description of the research status in the field of road friction coefficient estimation. Method: According to the current research status of Chinese and foreign scholars in the field of road friction coefficient recognition, the recognition methods are mainly divided into two categories: Cause-based and Effect-based. Results: This literature review will discuss the existing two types of identification methods (Cause-based and Effect-based), and the applicable characteristics of each algorithm are analyzed. Conclusion: The two recognition methods are analyzed synthetically, and the development direction of road friction coefficient recognition technology is discussed.


Sign in / Sign up

Export Citation Format

Share Document