scholarly journals Irradiance and nutrient-dependent effects on photosynthetic electron transport in Arctic phytoplankton: A comparison of two chlorophyll fluorescence-based approaches to derive primary photochemistry

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0256410
Author(s):  
Yayla Sezginer ◽  
David J. Suggett ◽  
Robert W. Izett ◽  
Philippe D. Tortell

We employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary photochemistry in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait, where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated that kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based photochemistry estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.

2021 ◽  
Author(s):  
Yayla Sezginer ◽  
David J. Suggett ◽  
Robert W. Izett ◽  
Philippe D. Tortell

AbstractWe employed Fast Repetition Rate fluorometry for high-resolution mapping of marine phytoplankton photophysiology and primary productivity in the Lancaster Sound and Barrow Strait regions of the Canadian Arctic Archipelago in the summer of 2019. Continuous ship-board analysis of chlorophyll a variable fluorescence demonstrated relatively low photochemical efficiency over most of the cruise-track, with the exception of localized regions within Barrow Strait where there was increased vertical mixing and proximity to land-based nutrient sources. Along the full transect, we observed strong non-photochemical quenching of chlorophyll fluorescence, with relaxation times longer than the 5-minute period used for dark acclimation. Such long-term quenching effects complicate continuous underway acquisition of fluorescence amplitude-based estimates of photosynthetic electron transport rates, which rely on dark acclimation of samples. As an alternative, we employed a new algorithm to derive electron transport rates based on analysis of fluorescence relaxation kinetics, which does not require dark acclimation. Direct comparison of kinetics- and amplitude-based electron transport rate measurements demonstrated kinetic-based estimates were, on average, 2-fold higher than amplitude-based values. The magnitude of decoupling between the two electron transport rate estimates increased in association with photophysiological diagnostics of nutrient stress. Discrepancies between electron transport rate estimates likely resulted from the use of different photophysiological parameters to derive the kinetics- and amplitude-based algorithms, and choice of numerical model used to fit variable fluorescence curves and analyze fluorescence kinetics under actinic light. Our results highlight environmental and methodological influences on fluorescence-based productivity estimates, and prompt discussion of best-practices for future underway fluorescence-based efforts to monitor phytoplankton photosynthesis.


2010 ◽  
Vol 56 (No. 10) ◽  
pp. 442-450
Author(s):  
A. Jurásek ◽  
J. Leugner ◽  
J. Martincová

Seedlings of European beech of two populations (from the 4<sup>th</sup> and 7<sup>th</sup> forest altitudinal zone) were grown in a shaded and unshaded plastic greenhouse. The objective was to compare seedling growth and the function of assimilatory organs and to determine their reactions after transfer to different light conditions.Seedlings grown in the unshaded plastic greenhouse (the sun variant) were taller and stronger at the end of the first growing season and had the higher weight and volume of shoots and root systems than seedlings grown in the shade. A higher number of leaves, larger total leaf area and higher dry matter of leaves per 1 plant were determined in seedlings grown in the sun. The average area of one leaf was larger in seedlings grown in the shade. The higher photosynthetic electron transport rate (ETR) determined from the light curves of chlorophyll fluorescence in seedlings grown in the sun was apparently connected with the higher photosynthetic rate and more intensive growth of these seedlings. The transfer of seedlings from full sun to shade resulted only in small changes in chlorophyll fluorescence (Fv/Fm, ETR). On the contrary, the transfer of seedlings from the shaded plastic greenhouse to the sun induced photoinhibition leading to a significant reduction in the maximum quantum yield of photochemistry Fv/Fm and in the photosynthetic electron transport rate (ETR).  


2020 ◽  
Vol 47 (12) ◽  
pp. 1041 ◽  
Author(s):  
Gretchen E. Kroh ◽  
Marinus Pilon

PAAI is a P-Type ATPase that functions to import copper (Cu) into the chloroplast. Arabidopsis thaliana (L.) Heynh. paa1 mutants have lowered plastocyanin levels, resulting in a decreased photosynthetic electron transport rate. In nature, iron (Fe) and Cu homeostasis are often linked and it can be envisioned that paa1 acclimates its photosynthetic machinery by adjusting expression of its chloroplast Fe-proteome, but outside of Cu homeostasis paa1 has not been studied. Here, we characterise paa1 ultrastructure and accumulation of electron transport chain proteins in a paa1 allelic series. Furthermore, using hydroponic growth conditions, we characterised metal homeostasis in paa1 with an emphasis on the effects of Fe deficiency. Surprisingly, the paa1 mutation does not affect chloroplast ultrastructure or the accumulation of other photosynthetic electron transport chain proteins, despite the strong decrease in electron transport rate. The regulation of Fe-related photosynthetic electron transport proteins in response to Fe status was maintained in paa1, suggesting that regulation of the chloroplast Fe proteins ignores operational signals from photosynthetic output. The characterisation of paa1 has revealed new insight into the regulation of expression of the photosynthetic electron transport chain proteins and chloroplast metal homeostasis and can help to develop new strategies for the detection of shoot Fe deficiency.


2018 ◽  
Vol 38 (11) ◽  
pp. 1126001
Author(s):  
陈双 Chen Shuang ◽  
殷高方 Yin Gaofang ◽  
赵南京 Zhao Nanjing ◽  
覃志松 Qin Zhisong ◽  
张小玲 Zhang Xiaoling ◽  
...  

2017 ◽  
Vol 37 (2) ◽  
pp. 377-385 ◽  
Author(s):  
Rengasamy Ramamoorthy ◽  
Bhushan Vishal ◽  
Srinivasan Ramachandran ◽  
Prakash P. Kumar

Author(s):  
Raymond J. Ritchie ◽  
Suhailar Sma-Air ◽  
Napapit Limsathapornkul ◽  
Nedrangsee Pranama ◽  
Meakha Nakkeaw ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document