scholarly journals Evaluation of combination protocols of the chemotherapeutic agent FX-9 with azacitidine, dichloroacetic acid, doxorubicin or carboplatin on prostate carcinoma cell lines

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256468
Author(s):  
Franziska Weiner ◽  
Jan Torben Schille ◽  
Jens Ingo Hein ◽  
Xiao-Feng Wu ◽  
Matthias Beller ◽  
...  

The isoquinolinamine FX-9 is a novel potential chemotherapeutic agent showing antiproliferative effects against hematologic and prostate cancer cell lines such as B- and T-acute lymphoblastic leukemia and prostate cancer (PC) of different species. Interestingly, FX-9 shows no hemolytic activity and low toxicity in benign adherent cells. The detailed FX-9 molecular mode of action is currently not fully understood. But application on neoplastic cells induces pro-apoptotic and antimitotic effects. Canine prostate cancer (cPC) represents a unique spontaneous occurring animal model for human androgen-independent PC. Human androgen-independent PC as well as cPC are currently not satisfactorily treatable with chemotherapeutic protocols. Accordingly, the evaluation of novel agent combinations bears significant potential for identifying novel treatment strategies. In this study, we combined FX-9 with the currently approved therapeutic agents doxorubicin, carboplatin, the demethylating substance azacitidine as well as further potentially antitumorigenic agents such as dichloroacetic acid (DCA) in order to evaluate the respective synergistic potential. The combinations with 1–5 μM FX-9 were evaluated regarding the effect after 72 hours on cell viability, cell count and apoptotic/necrotic cells in two human prostate cancer cell lines (LNCaP, PC-3) and a canine prostate cancer cell line (Adcarc1258) representing androgen-dependent and -independent PC/cPC forms. FX-9 in combination with azacitidine decreases cell viability and increases cell death with positive Bliss values. Furthermore, this decreases the cell count with neutral Bliss values on PC-3. Carboplatin in combination with FX-9 reduces cell viability with a neutral Bliss value and increases cell death on LNCaP with calculated positive Bliss values. DCA or doxorubicin in combination with FX-9 do not show synergistic or additive effects on the cell viability. Based on these results, azacitidine or carboplatin in combination with FX-9 offers synergistic/additive efficacy against prostate adenocarcinoma cell lines in vitro. The beneficial effects of both combinations are worth further investigation.

2009 ◽  
Vol 46 (2) ◽  
pp. 123-130
Author(s):  
Camila B. Piantino ◽  
Juliana M. Sousa-Canavez ◽  
Marta Bellodi-Privato ◽  
Miguel Srougi ◽  
Luiz Heraldo Camara-Lopes ◽  
...  

2017 ◽  
Vol 24 (1) ◽  
pp. 17-30 ◽  
Author(s):  
K M Biernacka ◽  
R A Persad ◽  
A Bahl ◽  
D Gillatt ◽  
J M P Holly ◽  
...  

The incidence of many common cancers varies between different populations and appears to be affected by a Western lifestyle. Highly proliferative malignant cells require sufficient levels of nutrients for their anabolic activity. Therefore, targeting genes and pathways involved in metabolic pathways could yield future therapeutics. A common pathway implicated in energetic and nutritional requirements of a cell is the LKB1/AMPK pathway. Metformin is a widely studied anti-diabetic drug, which improves glycaemia in patients with type 2 diabetes by targeting this pathway. We investigated the effect of metformin on prostate cancer cell lines and evaluated its mechanism of action using DU145, LNCaP, PC3 and VCaP prostate cancer cell lines. Trypan blue dye-exclusion assay was used to assess levels of cell death. Western immunoblotting was used to determine the abundance of proteins. Insulin-like growth factor-binding protein-2 (IGFBP-2) and AMPK genes were silenced using siRNA. Effects on cell morphology were visualised using microscopy. IGFBP-2 gene expression was assessed using real-time RT-PCR. With DU145 and LNCaP cells metformin alone induced cell death, but this was reduced in hyperglycaemic conditions. Hyperglycaemia also reduced the sensitivity to Docetaxel, but this was countered by co-treatment with metformin. LKB1 was required for the activation of AMPK but was not essential to mediate the induction of cell death. An alternative pathway by which metformin exerted its action was through downregulation of IGFBP-2 in DU145 and LNCaP cells, independently of AMPK. This finding could have important implications in relation to therapeutic strategies in prostate cancer patients presenting with diabetes.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 281-281
Author(s):  
Benjamin C. Powers ◽  
Bhaskar Das ◽  
Boumediene Bouzahzah ◽  
Peter J. Van Veldhuizen ◽  
Emma Borrego-Diaz Reyes

281 Background: Prostate cancer is the second most common cancer worldwide in males. The initial treatment in advanced cases is medical or surgical castration. The outlook declines when prostate cancer advances independently, despite the aforementioned castration. Within the last ten years, a handful of new agents have proven effective in this castration-resistant phase, but finding more effective, novel ways of treating advanced prostate cancer is warranted. MAGMAS (mitochondria-associated, granulocyte-macrophage colony stimulating factor (GM-CSF) signaling molecule) is a protein ubiquitously expressed in eukaryotic cells that plays a key role in embryonal development in a variety of species. Overexpression of MAGMAS has anti-apoptotic effects, as GM-CSF is a growth factor essential for survival, proliferation and differentiation of cells. MAGMAS and GM-CSF receptor levels have been shown to be overexpressed in prostate cancer, but do not correlate with pathological grade or clinical stage. The purpose of our study was to evaluate the efficacy of a MAGMAS inhibitor, synthesized by Dr Bhaskar Das, in androgen-dependent and androgen-independent prostate cancer cell lines, as well as in a normal prostate cell line as another control. Methods: The different cell lines were treated with MAGMAS inhibitor at various concentrations in vitro. For analysis, we used MTT Cell Proliferation assay at 24 and 48 hours, per manufacturer’s protocol. We tested MAGMAS inhibitor effect on apoptosis/necrosis, cell migration and microtubule destabilization as well. Results: After prostate cancer cell lines were treated with MAGMAS inhibitor in vitro, cell proliferation and migration decreased, apoptosis and necrosis were induced, and microtubules were destabilized, all showing more impressive results in the androgen-independent cells. MAGMAS inhibition did not affect cell proliferation in the normal prostate cells. Conclusions: In vitro studies show MAGMAS inhibition proves efficacious in both androgen-dependent and androgen-independent prostate cancer cell lines. This will be evaluated further in a xenograft mouse model.


The Prostate ◽  
2000 ◽  
Vol 42 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Johan Jongsma ◽  
Monique H.A. Oomen ◽  
Marinus A. Noordzij ◽  
Johannes C. Romijn ◽  
Theodorus H. van der Kwast ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document