scholarly journals Picture semantic similarity search based on bipartite network of picture-tag type

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259028
Author(s):  
Mingxi Zhang ◽  
Liuqian Yang ◽  
Yipeng Dong ◽  
Jinhua Wang ◽  
Qinghan Zhang

Searching similar pictures for a given picture is an important task in numerous applications, including image recommendation system, image classification and image retrieval. Previous studies mainly focused on the similarities of content, which measures similarities based on visual features, such as color and shape, and few of them pay enough attention to semantics. In this paper, we propose a link-based semantic similarity search method, namely PictureSim, for effectively searching similar pictures by building a picture-tag network. The picture-tag network is built by “description” relationships between pictures and tags, in which tags and pictures are treated as nodes, and relationships between pictures and tags are regarded as edges. Then we design a TF-IDF-based model to removes the noisy links, so the traverses of these links can be reduced. We observe that “similar pictures contain similar tags, and similar tags describe similar pictures”, which is consistent with the intuition of the SimRank. Consequently, we utilize the SimRank algorithm to compute the similarity scores between pictures. Compared with content-based methods, PictureSim could effectively search similar pictures semantically. Extensive experiments on real datasets to demonstrate the effectiveness and efficiency of the PictureSim.

Author(s):  
Gangavarapu Venkata Satya Kumar ◽  
Pillutla Gopala Krishna Mohan

In diverse computer applications, the analysis of image content plays a key role. This image content might be either textual (like text appearing in the images) or visual (like shape, color, texture). These two image contents consist of image’s basic features and therefore turn out to be as the major advantage for any of the implementation. Many of the art models are based on the visual search or annotated text for Content-Based Image Retrieval (CBIR) models. There is more demand toward multitasking, a new method needs to be introduced with the combination of both textual and visual features. This paper plans to develop the intelligent CBIR system for the collection of different benchmark texture datasets. Here, a new descriptor named Information Oriented Angle-based Local Tri-directional Weber Patterns (IOA-LTriWPs) is adopted. The pattern is operated not only based on tri-direction and eight neighborhood pixels but also based on four angles [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Once the patterns concerning tri-direction, eight neighborhood pixels, and four angles are taken, the best patterns are selected based on maximum mutual information. Moreover, the histogram computation of the patterns provides the final feature vector, from which the new weighted feature extraction is performed. As a new contribution, the novel weight function is optimized by the Improved MVO on random basis (IMVO-RB), in such a way that the precision and recall of the retrieved image is high. Further, the proposed model has used the logarithmic similarity called Mean Square Logarithmic Error (MSLE) between the features of the query image and trained images for retrieving the concerned images. The analyses on diverse texture image datasets have validated the accuracy and efficiency of the developed pattern over existing.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ziqiang Wang ◽  
Xia Sun ◽  
Lijun Sun ◽  
Yuchun Huang

In many image classification applications, it is common to extract multiple visual features from different views to describe an image. Since different visual features have their own specific statistical properties and discriminative powers for image classification, the conventional solution for multiple view data is to concatenate these feature vectors as a new feature vector. However, this simple concatenation strategy not only ignores the complementary nature of different views, but also ends up with “curse of dimensionality.” To address this problem, we propose a novel multiview subspace learning algorithm in this paper, named multiview discriminative geometry preserving projection (MDGPP) for feature extraction and classification. MDGPP can not only preserve the intraclass geometry and interclass discrimination information under a single view, but also explore the complementary property of different views to obtain a low-dimensional optimal consensus embedding by using an alternating-optimization-based iterative algorithm. Experimental results on face recognition and facial expression recognition demonstrate the effectiveness of the proposed algorithm.


Content based image retrieval system retrieve the images according to the strong feature related to desire as color, texture and shape of an image. Although visual features cannot be completely determined by semantic features, but still semantic features can be integrate easily into mathematical formulas. This paper is focused on retrieval of images within a large image collection, based on color projection by applying segmentation and quantification on different color models and compared for good result. This method is applied on different categories of image set and evaluated its retrieval rate in different models


Author(s):  
Veronica Gil-Costa ◽  
Romina Soledad Molina ◽  
Ricardo Petrino ◽  
Carlos Federico Sosa Paez ◽  
A. Marcela Printista ◽  
...  

Typical applications involving image retrieval processes demand a great amount of computation. The visual content of the images is extracted and represented by means of descriptor vectors of multidimensional characteristics. The image retrieval process consists of two tasks: (1) generation of database and indexing; and (2) the search process. The first task involves the construction of descriptor vectors. Then, an index is built upon the database to speed the search process. The second requires calculating a descriptor vector for the query image and computes the similarity search with the ones stored in the index. In this context, it is relevant to devise new algorithms and different parallel platforms that can reduce execution times. In particular, this work focuses on platforms with FPGAs based SoCs to present and evaluate a two stage system where the index is constructed off-line and the similarity search is executed on-line. Results show that the FPGA is 73% faster than a 2 Quad CPU to compute the descriptor vector of an image when using the Color Layout Descriptor of MPEG-7.


Sign in / Sign up

Export Citation Format

Share Document