scholarly journals Intensity dependency of peripheral nerve stimulation in spinal LTP induced by paired associative corticospinal-motoneuronal stimulation (PCMS)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259931
Author(s):  
Akira Yamashita ◽  
Takenobu Murakami ◽  
Noriaki Hattori ◽  
Ichiro Miyai ◽  
Yoshikazu Ugawa

Paired associative corticospinal-motoneuronal stimulation (PCMS) induces plasticity at synapses between corticospinal tracts (CSTs) and spinal motoneurons (SMs). We investigated the effects of peripheral nerve electrical stimulation (PNS) intensity on PCMS-induced plasticity. PCMS consisted of 180 paired stimuli of transcranial magnetic stimulation (TMS) over the left primary motor cortex with PNS on the right ulnar nerve at the wrist. We compared effects induced by different PNS intensities: supramaximal, twice and three times sensory threshold intensities. For evaluating efficacy of the synapse between CSTs and SMs, single-pulse TMS was delivered at cervicomedullary junction level, and cervicomedullary motor-evoked potentials (CMEPs) were recorded from the right first-dorsal interosseous muscle before and after PCMS. PCMS with the supramaximal PNS intensity increased CMEP amplitude. The facilitatory effect of PCMS with the supramaximal PNS was larger than those of PCMS with weaker PNS intensities. Sham TMS with the supramaximal PNS showed no CMEP changes after the intervention. PNS intensity of PCMS influences the magnitude of synaptic plasticity induction between the CSTs and SMs at the spinal level, and the supramaximal intensity is the best for induction of long-term potentiation-like effects. The PNS intensity may influence the number of activated SMs by axonal backpropagating pulses with PNS which must overlap with descending volleys induced by TMS.

2008 ◽  
Vol 100 (6) ◽  
pp. 3437-3444 ◽  
Author(s):  
Hideyuki Matsumoto ◽  
Ritsuko Hanajima ◽  
Masashi Hamada ◽  
Yasuo Terao ◽  
Akihiro Yugeta ◽  
...  

Magnetic stimulation with a double-cone-coil over the back of the head activates the motor tracts at the level of pyramidal decussation (brain stem stimulation [BST]). However, single-pulse BST (single BST) sometimes cannot elicit motor-evoked potentials (MEPs) in patients with corticospinal tract involvement. We developed a technique using double-pulse BST (double BST) to elicit MEPs even in patients whose threshold is abnormally elevated. Subjects were 11 healthy volunteers and 12 patients with corticospinal tract involvement in whom single BST evoked no discernible MEP. Double BST was performed at the intensities of resting and active motor threshold for single BST; MEPs were recorded from the first dorsal interosseous muscle. Interstimulus intervals (ISIs) between two pulses were 1.5, 2, 3, 5, and 10 ms in healthy subjects. Double BST enlarged MEPs at ISIs of 1.5–5 ms with a peak at 2 ms in the relaxed condition, but not in the active condition. At an ISI of 2 ms in the relaxed condition, the MEP amplitude was 15 times as large as that to single BST in relaxed muscles. The onset latency of the enlarged MEP from the second pulse in relaxed muscles was the same as that by single BST in active muscles. Double BST at a 2-ms interval elicited MEPs in eight patients. Double BST can enhance MEPs probably by temporal summations of excitatory postsynaptic potentials at the spinal motoneurons. Using this new technique, we can obtain more information about the central motor conduction even when single BST fails to elicit any MEP.


2018 ◽  
Vol 119 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
Vincent Cabibel ◽  
Makii Muthalib ◽  
Wei-Peng Teo ◽  
Stephane Perrey

The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (−11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuyuki Takamatsu ◽  
Satoko Koganemaru ◽  
Tatsunori Watanabe ◽  
Sumiya Shibata ◽  
Yoshihiro Yukawa ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.


2012 ◽  
Vol 24 (5) ◽  
pp. 1138-1148 ◽  
Author(s):  
Masahiro Nakatsuka ◽  
Mohamed Nasreldin Thabit ◽  
Satoko Koganemaru ◽  
Ippei Nojima ◽  
Hidenao Fukuyama ◽  
...  

We can recognize handwritten letters despite the variability among writers. One possible strategy is exploiting the motor memory of orthography. By using TMS, we clarified the excitatory and inhibitory neural circuits of the motor corticospinal pathway that might be activated during the observation of handwritten letters. During experiments, participants looked at the handwritten or printed single letter that appeared in a random order. The excitability of the left and right primary motor cortex (M1) was evaluated by motor-evoked potentials elicited by single-pulse TMS. Short interval intracortical inhibition (SICI) of the left M1 was evaluated using paired-pulse TMS. F waves were measured for the right ulnar nerve. We found significant reduction of corticospinal excitability only for the right hand at 300–400 msec after each letter presentation without significant changes in SICI. This suppression is likely to be of supraspinal origin, because of no significant alteration in F-wave amplitudes. These findings suggest that the recognition of handwritten letters may include the implicit knowledge of “writing” in M1. The M1 activation associated with that process, which has been shown in previous neuroimaging studies, is likely to reflect the active suppression of the corticospinal excitability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Pozdniakov ◽  
Alicia Nunez Vorobiova ◽  
Giulia Galli ◽  
Simone Rossi ◽  
Matteo Feurra

AbstractTranscranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that allows interaction with endogenous cortical oscillatory rhythms by means of external sinusoidal potentials. The physiological mechanisms underlying tACS effects are still under debate. Whereas online (e.g., ongoing) tACS over the motor cortex induces robust state-, phase- and frequency-dependent effects on cortical excitability, the offline effects (i.e. after-effects) of tACS are less clear. Here, we explored online and offline effects of tACS in two single-blind, sham-controlled experiments. In both experiments we used neuronavigated transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) as a probe to index changes of cortical excitability and delivered M1 tACS at 10 Hz (alpha), 20 Hz (beta) and sham (30 s of low-frequency transcranial random noise stimulation; tRNS). Corticospinal excitability was measured by single pulse TMS-induced motor evoked potentials (MEPs). tACS was delivered online in Experiment 1 and offline in Experiment 2. In Experiment 1, the increase of MEPs size was maximal with the 20 Hz stimulation, however in Experiment 2 neither the 10 Hz nor the 20 Hz stimulation induced tACS offline effects. These findings support the idea that tACS affects cortical excitability only during online application, at least when delivered on the scalp overlying M1, thereby contributing to the development of effective protocols that can be applied to clinical populations.


Author(s):  
Vincent Cabibel ◽  
Makii Muthalib ◽  
Jérôme Froger ◽  
Stéphane Perrey

Repeated transcranial magnetic stimulation (rTMS) is a well-known clinical neuromodulation technique, but transcranial direct-current stimulation (tDCS) is rapidly growing interest for neurorehabilitation applications. Both methods (contralesional hemisphere inhibitory low-frequency: LF-rTMS or lesional hemisphere excitatory anodal: a-tDCS) have been employed to modify the interhemispheric imbalance following stroke. The aim of this pilot study was to compare aHD-tDCS (anodal high-definition tDCS) of the left M1 (2 mA, 20 min) and LF-rTMS of the right M1 (1 Hz, 20 min) to enhance excitability and reduce inhibition of the left primary motor cortex (M1) in five healthy subjects. Single-pulse TMS was used to elicit resting and active (low level muscle contraction, 5% of maximal electromyographic signal) motor-evoked potentials (MEPs) and cortical silent periods (CSPs) from the right and left extensor carpi radialis muscles at Baseline, immediately and 20 min (Post-Stim-20) after the end of each stimulation protocol. LF-rTMS or aHD-tDCS significantly increased right M1 resting and active MEP amplitude at Post-Stim-20 without any CSP modulation and with no difference between methods. In conclusion, this pilot study reported unexpected M1 excitability changes, which most likely stems from variability, which is a major concern in the field to consider.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255815
Author(s):  
Lukas Schilberg ◽  
Sanne Ten Oever ◽  
Teresa Schuhmann ◽  
Alexander T. Sack

The evaluation of transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) promises valuable information about fundamental brain related mechanisms and may serve as a diagnostic tool for clinical monitoring of therapeutic progress or surgery procedures. However, reports about spontaneous fluctuations of MEP amplitudes causing high intra-individual variability have led to increased concerns about the reliability of this measure. One possible cause for high variability of MEPs could be neuronal oscillatory activity, which reflects fluctuations of membrane potentials that systematically increase and decrease the excitability of neuronal networks. Here, we investigate the dependence of MEP amplitude on oscillation power and phase by combining the application of single pulse TMS over the primary motor cortex with concurrent recordings of electromyography and electroencephalography. Our results show that MEP amplitude is correlated to alpha phase, alpha power as well as beta phase. These findings may help explain corticospinal excitability fluctuations by highlighting the modulatory effect of alpha and beta phase on MEPs. In the future, controlling for such a causal relationship may allow for the development of new protocols, improve this method as a (diagnostic) tool and increase the specificity and efficacy of general TMS applications.


2017 ◽  
Vol 23 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Christian Hyde ◽  
Ian Fuelscher ◽  
Jarrad A.G. Lum ◽  
Jacqueline Williams ◽  
Jason He ◽  
...  

AbstractObjectives:It is unclear whether the primary motor cortex (PMC) is involved in the mental simulation of movement [i.e., motor imagery (MI)]. The present study aimed to clarify PMC involvement using a highly novel adaptation of the hand laterality task (HLT).Methods:Participants were administered single-pulse transcranial magnetic stimulation (TMS) to the hand area of the left PMC (hPMC) at either 50 ms, 400 ms, or 650 ms post stimulus presentation. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous via electromyography. To avoid the confound of gross motor response, participant response (indicating left or right hand) was recorded via eye tracking. Participants were 22 healthy adults (18 to 36 years), 16 whose behavioral profile on the HLT was consistent with the use of a MI strategy (MI users).Results:hPMC excitability increased significantly during HLT performance for MI users, evidenced by significantly larger right hand MEPs following single-pulse TMS 50 ms, 400 ms, and 650 ms post stimulus presentation relative to baseline. Subsequent analysis showed that hPMC excitability was greater for more complex simulated hand movements, where hand MEPs at 50 ms were larger for biomechanically awkward movements (i.e., hands requiring lateral rotation) compared to simpler movements (i.e., hands requiring medial rotation).Conclusions:These findings provide support for the modulation of PMC excitability during the HLT attributable to MI, and may indicate a role for the PMC during MI. (JINS, 2017,23, 185–193)


2017 ◽  
Vol 29 (11) ◽  
pp. 1918-1931 ◽  
Author(s):  
Nicolas A. McNair ◽  
Ashleigh D. Behrens ◽  
Irina M. Harris

Previous behavioral and neuroimaging studies have suggested that the motor properties associated with graspable objects may be automatically accessed when people passively view these objects. We directly tested this by measuring the excitability of the motor pathway when participants viewed pictures of graspable objects that were presented during the attentional blink (AB), when items frequently go undetected. Participants had to identify two briefly presented objects separated by either a short or long SOA. Motor-evoked potentials were measured from the right hand in response to a single TMS pulse delivered over the left primary motor cortex 250 msec after the onset of the second target. Behavioral results showed poorer identification of objects at short SOA compared with long SOA, consistent with an AB, which did not differ between graspable and nongraspable objects. However, motor-evoked potentials measured during the AB were significantly higher for graspable objects than for nongraspable objects, irrespective of whether the object was successfully identified or undetected. This provides direct evidence that the motor system is automatically activated during visual processing of objects that afford a motor action.


2010 ◽  
Vol 104 (6) ◽  
pp. 2922-2931 ◽  
Author(s):  
Juliette A. Yedimenko ◽  
Monica A. Perez

The activity in the primary motor cortex (M1) reflects the direction of movements, but little is known about physiological changes in the M1 during generation of bilateral isometric forces in different directions. Here, we used transcranial magnetic stimulation to examine motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), and interhemispheric inhibition (IHI) in the left first dorsal interosseous (FDI) during isometric index finger abduction while the right index finger remained at rest or performed isometric forces in different directions (abduction or adduction) and in different postures (prone and supine). Left FDI MEPs were suppressed during bilateral compared with unilateral forces, with a stronger suppression when the right index finger force was exerted in the adduction direction regardless of hand posture. IHI targeting the left FDI increased during bilateral compared with unilateral forces and this increase was stronger during right index finger adduction despite the posture of the right hand. SICI decreased to a similar extent during both bilateral forces in both hand postures. Thus generation of index finger isometric forces away from the body midline (adduction direction), regardless of the muscle engaged in the task, down-regulates corticospinal output in the contralateral active hand to a greater extent than forces exerted toward the body midline (abduction direction). Transcallosal inhibition, but not GABAergic intracortical circuits, was modulated by the direction of the force. These findings suggest that during generation of bimanual isometric forces the M1 is driven by “extrinsic” parameters related to the hand action.


Sign in / Sign up

Export Citation Format

Share Document