scholarly journals The annual cycle for whimbrel populations using the Western Atlantic Flyway

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260339
Author(s):  
Bryan D. Watts ◽  
Fletcher M. Smith ◽  
Chance Hines ◽  
Laura Duval ◽  
Diana J. Hamilton ◽  
...  

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chris P. F. Redfern

Abstract Background The extent to which pairs remain together during the annual cycle is a key question in the behavioural ecology of migratory birds. While a few species migrate and winter as family units, for most the extent to which breeding partners associate in the non-breeding season is unknown. The Arctic Tern (Sterna paradisaea) has one of the longest migrations of any species, and the aim of this study was to establish whether or not partners remain together after breeding. Methods Leg-mounted geolocators were fitted to breeding pairs of Arctic Terns nesting on the Farne Islands, Northumberland, UK. The devices were recovered for analysis the following year. Results Analysis of data for the six pairs which returned the following year showed that partners departed from the colony at different times after breeding and migrated independently to different Antarctic regions. Partners also departed from the Antarctic and turned to the breeding colony independently. One third of the pairs divorced on return. Conclusions For long-distance migrants reliant on unpredictable foraging opportunities, it may not be viable to remain as pairs away from the breeding colony. Synchrony in arrival times at the breeding colony may maximise the chance of retaining a familiar partner, but could be affected by environmental factors in wintering areas or along migration routes.


2007 ◽  
Vol 363 (1490) ◽  
pp. 247-266 ◽  
Author(s):  
Deborah M Buehler ◽  
Theunis Piersma

Long-distance migration, and the study of the migrants who undertake these journeys, has fascinated generations of biologists. However, many aspects of the annual cycles of these migrants remain a mystery as do many of the driving forces behind the evolution and maintenance of the migrations themselves. In this article we discuss nutritional, energetic, temporal and disease - risk bottlenecks in the annual cycle of long-distance migrants, taking a sandpiper, the red knot Calidris canutus , as a focal species. Red knots have six recognized subspecies each with different migratory routes, well-known patterns of connectivity and contrasting annual cycles. The diversity of red knot annual cycles allows us to discuss the existence and the effects of bottlenecks in a comparative framework. We examine the evidence for bottlenecks focusing on the quality of breeding plumage and the timing of moult as indicators in the six subspecies. In terms of breeding plumage coloration, quality and timing of prealternate body moult (from non-breeding into breeding plumage), the longest migrating knot subspecies, Calidris canutus rogersi and Calidris canutus rufa , show the greatest impact of bottlenecking. The same is true in terms of prebasic body moult (from breeding into non-breeding plumage) which in case of both C. c. rogersi and C. c. rufa overlaps with southward migration and may even commence in the breeding grounds. To close our discussion of bottlenecks in long-distance migrants, we make predictions about how migrants might be impacted via physiological ‘trade-offs’ throughout the annual cycle, using investment in immune function as an example. We also predict how bottlenecks may affect the distribution of mortality throughout the annual cycle. We hope that this framework will be applicable to other species and types of migrants, thus expanding the comparative database for the future evaluation of seasonal selection pressures and the evolution of annual cycles in long-distance migrants. Furthermore, we hope that this synthesis of recent advancements in the knowledge of red knot annual cycles will prove useful in the ongoing attempts to model annual cycles in migratory birds.


2016 ◽  
Vol 283 (1839) ◽  
pp. 20161366 ◽  
Author(s):  
Barbara M. Tomotani ◽  
Phillip Gienapp ◽  
Domien G. M. Beersma ◽  
Marcel E. Visser

Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.


2014 ◽  
Vol 281 (1778) ◽  
pp. 20132897 ◽  
Author(s):  
Christiane Trierweiler ◽  
Raymond H. G. Klaassen ◽  
Rudi H. Drent ◽  
Klaus-Michael Exo ◽  
Jan Komdeur ◽  
...  

Knowledge about migratory connectivity, the degree to which individuals from the same breeding site migrate to the same wintering site, is essential to understand processes affecting populations of migrants throughout the annual cycle. Here, we study the migration system of a long-distance migratory bird, the Montagu's harrier Circus pygargus , by tracking individuals from different breeding populations throughout northern Europe. We identified three main migration routes towards wintering areas in sub-Saharan Africa. Wintering areas and migration routes of different breeding populations overlapped, a pattern best described by ‘weak (diffuse) connectivity’. Migratory performance, i.e. timing, duration, distance and speed of migration, was surprisingly similar for the three routes despite differences in habitat characteristics. This study provides, to our knowledge, a first comprehensive overview of the migration system of a Palaearctic-African long-distance migrant. We emphasize the importance of spatial scale (e.g. distances between breeding populations) in defining patterns of connectivity and suggest that knowledge about fundamental aspects determining distribution patterns, such as the among-individual variation in mean migration directions, is required to ultimately understand migratory connectivity. Furthermore, we stress that for conservation purposes it is pivotal to consider wintering areas as well as migration routes and in particular stopover sites.


2019 ◽  
Vol 286 (1897) ◽  
pp. 20182821 ◽  
Author(s):  
Martins Briedis ◽  
Silke Bauer ◽  
Peter Adamík ◽  
José A. Alves ◽  
Joana S. Costa ◽  
...  

In many taxa, the most common form of sex-biased migration timing is protandry—the earlier arrival of males at breeding areas. Here we test this concept across the annual cycle of long-distance migratory birds. Using more than 350 migration tracks of small-bodied trans-Saharan migrants, we quantify differences in male and female migration schedules and test for proximate determinants of sex-specific timing. In autumn, males started migration about 2 days earlier, but this difference did not carry over to arrival at the non-breeding sites. In spring, males on average departed from the African non-breeding sites about 3 days earlier and reached breeding sitesca4 days ahead of females. A cross-species comparison revealed large variation in the level of protandry and protogyny across the annual cycle. While we found tight links between individual timing of departure and arrival within each migration season, only for males the timing of spring migration was linked to the timing of previous autumn migration. In conclusion, our results demonstrate that protandry is not exclusively a reproductive strategy but rather occurs year-round and the two main proximate determinants for the magnitude of sex-biased arrival times in autumn and spring are sex-specific differences in departure timing and migration duration.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4304 ◽  
Author(s):  
Dongping Liu ◽  
Guogang Zhang ◽  
Hongxing Jiang ◽  
Jun Lu

Migratory birds often follow detours when confronted with ecological barriers, and understanding the extent and the underlying drivers of such detours can provide important insights into the associated cost to the annual energy budget and the migration strategies. The Qinghai-Tibetan Plateau is the most daunting geographical barrier for migratory birds because the partial pressure of oxygen is dramatically reduced and flight costs greatly increase. We analyzed the repeated migration detours and habitat associations of four Pallas’s Gulls Larus ichthyaetus across the Qinghai-Tibetan Plateau over 22 migration seasons. Gulls exhibited notable detours, with the maximum distance being more than double that of the expected shortest route, that extended rather than reduced the passage across the plateau. The extent of longitudinal detours significantly increased with latitude, and detours were longer in autumn than in spring. Compared with the expected shortest routes, proximity to water bodies increased along autumn migration routes, but detour-habitat associations were weak along spring migration routes. Thus, habitat availability was likely one, but not the only, factor shaping the extent of detours, and migration routes were determined by different mechanisms between seasons. Significant between-individual variation but high individual consistency in migration timing and routes were revealed in both seasons, indicating a stronger influence of endogenous schedules than local environmental conditions. Gulls may benefit from repeated use of familiar routes and stopover sites, which may be particularly significant in the challenging environment of the Qinghai-Tibetan Plateau.


2010 ◽  
Vol 107 (5) ◽  
pp. 2078-2081 ◽  
Author(s):  
Carsten Egevang ◽  
Iain J. Stenhouse ◽  
Richard A. Phillips ◽  
Aevar Petersen ◽  
James W. Fox ◽  
...  

The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes.


2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Linus Hedh ◽  
Juliana Dänhardt ◽  
Anders Hedenström

Abstract A common migratory pattern in birds is that northerly breeding populations migrate to more southerly non-breeding sites compared to southerly breeding populations (leap-frog migration). Not only do populations experience differences in migration distances, but also different environmental conditions, which may vary spatiotemporally within their annual cycles, creating distinctive selective pressures and migratory strategies. Information about such adaptations is important to understand migratory drivers and evolution of migration patterns. We use light-level geolocators and citizen science data on regional spring arrivals to compare two populations of common ringed plover Charadrius hiaticula breeding at different latitudes. We (1) describe and characterize the annual cycles and (2) test predictions regarding speed and timing of migration. The northern breeding population (NBP) wintered in Africa and the southern (SBP) mainly in Europe. The annual cycles were shifted temporally so that the NBP was always later in all stages. The SBP spent more than twice as long time in the breeding area, but there was no difference in winter. The NBP spent more time on migration in general. Spring migration speed was lower in the SBP compared to autumn speed of both populations, and there was no difference in autumn and spring speed in the NBP. We also found a larger variation in spring arrival times across years in the SBP. This suggests that a complex interaction of population specific timing and variation of breeding onset, length of breeding season, and proximity to the breeding area shape the annual cycle and migratory strategies. Significance statement Migration distance, climate, and the resulting composition of the annual cycle are expected to influence migration strategies and timing in birds. Testing theories regarding migration behaviours are challenging, and intraspecific comparisons over the full annual cycle are still rare. Here we compare the spatiotemporal distributions of two latitudinally separated populations of common ringed plovers using light-level geolocators. We found that there was a larger long-term variation in first arrival dates and that migration speed was slower only in spring in a temperate, short-distance migratory population, compared to an Arctic, long-distance migratory population. This suggests that a complex interaction of population specific timing and variation of breeding onset, length of breeding season and proximity to the breeding area shape the annual cycle and migratory behaviours.


2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Michael T. Hallworth ◽  
Erin Bayne ◽  
Emily McKinnon ◽  
Oliver Love ◽  
Junior A. Tremblay ◽  
...  

Many migratory species are declining and for most, the proximate causes of their declines remain unknown. For many long-distance Neotropical migratory songbirds, it is assumed that habitat loss on breeding or non-breeding grounds is a primary driver of population declines. We integrated data collected from tracking technology, community science and remote sensing data to quantify migratory connectivity (MC), population trends and habitat loss. We quantified the correlation between forest change throughout the annual cycle and population declines of a long-distance migratory songbird, the Connecticut warbler ( Oporornis agilis , observed decline: −8.99% yr −1 ). MC, the geographic link between populations during two or more phases of the annual cycle, was stronger between breeding and autumn migration routes (MC = 0.24 ± 0.23) than between breeding and non-breeding locations (MC = −0.2 ± 0.14). Different Connecticut warbler populations tended to have population-specific fall migration routes but overlapped almost completely within the northern Gran Chaco ecoregion in South America. Cumulative forest loss within 50 km of breeding locations and the resulting decline in the largest forested patch index was correlated more strongly with population declines than forest loss on migratory stopover regions or on wintering locations in South America, suggesting that habitat loss during the breeding season is a driver of observed population declines for the Connecticut warbler. Land-use practices that retain large, forested patches within landscapes will likely benefit breeding populations of this declining songbird, but further research is needed to help inform land-use practices across the full annual cycle to minimize the impacts to migratory songbirds and abate ongoing population declines.


Sign in / Sign up

Export Citation Format

Share Document