scholarly journals Habitat loss on the breeding grounds is a major contributor to population declines in a long-distance migratory songbird

2021 ◽  
Vol 288 (1949) ◽  
Author(s):  
Michael T. Hallworth ◽  
Erin Bayne ◽  
Emily McKinnon ◽  
Oliver Love ◽  
Junior A. Tremblay ◽  
...  

Many migratory species are declining and for most, the proximate causes of their declines remain unknown. For many long-distance Neotropical migratory songbirds, it is assumed that habitat loss on breeding or non-breeding grounds is a primary driver of population declines. We integrated data collected from tracking technology, community science and remote sensing data to quantify migratory connectivity (MC), population trends and habitat loss. We quantified the correlation between forest change throughout the annual cycle and population declines of a long-distance migratory songbird, the Connecticut warbler ( Oporornis agilis , observed decline: −8.99% yr −1 ). MC, the geographic link between populations during two or more phases of the annual cycle, was stronger between breeding and autumn migration routes (MC = 0.24 ± 0.23) than between breeding and non-breeding locations (MC = −0.2 ± 0.14). Different Connecticut warbler populations tended to have population-specific fall migration routes but overlapped almost completely within the northern Gran Chaco ecoregion in South America. Cumulative forest loss within 50 km of breeding locations and the resulting decline in the largest forested patch index was correlated more strongly with population declines than forest loss on migratory stopover regions or on wintering locations in South America, suggesting that habitat loss during the breeding season is a driver of observed population declines for the Connecticut warbler. Land-use practices that retain large, forested patches within landscapes will likely benefit breeding populations of this declining songbird, but further research is needed to help inform land-use practices across the full annual cycle to minimize the impacts to migratory songbirds and abate ongoing population declines.

2015 ◽  
Vol 2 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Lawrence Lam ◽  
Emily A. McKinnon ◽  
James D. Ray ◽  
Myrna Pearman ◽  
Glen T. Hvenegaard ◽  
...  

AbstractFor long-distance migratory songbirds, morphological traits such as longer wings and a smaller body size are predicted to increase migration efficiency. Due to previous limitations in our ability to track the long-distance journeys of small-bodied birds, the relationship between morphology and start-to-finish migration performance has never been fully tested in free-living songbirds. Using direct-tracking data obtained from light-level geolocators, we examined the effects of morphological factors (wing and body size) on spring and fall migration performance (flight speed, duration of stopovers, total stopovers taken) of a widely distributed, trans-hemispheric migratory songbird, the purple martin (Progne subis) (n = 120). We found that smaller-bodied birds spent fewer days at stopovers along fall migration, but larger-bodied birds spent fewer days at stopover and took fewer stopovers during spring migration. More of the variation in fall migration performance was explained by morphology, as compared to spring migration, possibly indicating a larger influence of environmental conditions on spring performance. Overall, our results partially support long-standing and previously untested predictions regarding the influence of intrinsic factors on migration performance. Future research should examine the influence of environmental variation on migration performance as well as additional morphological traits that may contribute to migration performance.


1999 ◽  
Vol 9 (2) ◽  
pp. 155-161 ◽  
Author(s):  
Frédéric Launay ◽  
Olivier Combreau ◽  
Mohammed Al Bowardi

SummaryThe Houbara Bustard Chlamydotis undulata macqueenii is a regular winter visitor from northern breeding grounds to the United Arab Emirates (UAE) but the migration routes and origin of these birds are still poorly known. Five bustards were fitted with platform transponder terminals in UAE in the winter of 1996-1997. The overall distances covered by the birds were very variable, ranging from 3,747 km to 11,938 km. The return migration date of Houbara from UAE ranged from 19 March to 2 April 1997, while the outward migration began from 10 September to 7 November 1997. The Houbara spent the summer n i different areas, namely China (north of lake Nor), Kazakhstan (Kyzyl Kum desert and north of the Aral Sea), Uzbekistan (south of the Aral Sea) and north Afghanistan. These results are the first to describe an annual cycle of migration for Houbara Bustards and should aid the development of appropriate conservation measures for this species.


2018 ◽  
Vol 96 (8) ◽  
pp. 869-875 ◽  
Author(s):  
J.W. Ng ◽  
E.C. Knight ◽  
A.L. Scarpignato ◽  
A.-L. Harrison ◽  
E.M. Bayne ◽  
...  

Over one third of North American bird species are in decline, and for many species, we still lack fundamental biogeographic information such as migration routes and nonbreeding areas. Identifying causes of declines is limited because tracking many species throughout their annual cycle with high precision and accuracy is challenging. Common Nighthawks (Chordeiles minor (J.R. Forster, 1771)) have declined throughout much of their range and have yet to have their migratory and nonbreeding areas identified and characterized. We tracked Common Nighthawks by deploying a new 3.5 g Pinpoint GPS-Argos tag on adult males. Seven of 10 (70%) tags uploaded locations, providing the first data on migration, nonbreeding habitat, and annual site fidelity to breeding areas. Birds used similar loop migration routes and overwintered in Brazil’s Cerrado and Amazon regions. Nonbreeding season roosting home ranges were 148.22 ± 121 ha (mean ± SE) and included forest, grassland, and cropland. Breeding home-range fidelity was high; all tracked birds returned to within 1.27 ± 0.27 km of original capture locations. Our study is the first tracking of Common Nighthawks throughout their full annual cycle. Continued miniaturization of tracking technology, like the GPS-Argos transmitters used, is critical for identifying the causes of population declines of previously enigmatic migratory species.


2015 ◽  
Vol 25 (1) ◽  
pp. 1-37 ◽  
Author(s):  
DING LI YONG ◽  
YANG LIU ◽  
BING WEN LOW ◽  
CARMELA P. ESPAÑOLA ◽  
CHANG-YONG CHOI ◽  
...  

SummaryThe East Asian-Australasian Flyway supports the greatest diversity and populations of migratory birds globally, as well as the highest number of threatened migratory species of any flyway, including passerines (15 species). However it is also one of the most poorly understood migration systems, and little is known about the populations and ecology of the passerine migrants that breed, stop over and winter in the habitats along this flyway. We provide the first flyway-wide review of diversity, ecology, and conservation issues relating to 170 species of long-distance and over 80 short-distance migrants from 32 families. Recent studies of songbird migration movements and ecology is limited, and is skewed towards East Asia, particularly Mainland China, Taiwan, Russia, Japan and South Korea. Strong evidence of declines exists for some species, e.g. Yellow-breasted Bunting Emberiza aureola, but tends to be fragmentary, localised or anecdotal for many others. More species have small breeding ranges (< 250,000 km2) and/or are dependent on tropical forests as wintering habitat than those in any other Eurasian migratory system, and are thus more vulnerable to habitat loss and degradation throughout their ranges. Poorly regulated hunting for food and the pet trade, invasive species and collisions with man-made structures further threaten migratory songbirds at a number of stop-over or wintering sites, while climate change and habitat loss may be of increasing concern in the breeding ranges. A key conservation priority is to carry out intensive field surveys across the region while simultaneously tapping into citizen science datasets, to identify important stop-over and wintering sites, particularly for poorly-known or globally threatened species across South-East Asia and southern China for targeted conservation actions. Additionally, the advent of miniaturised tracking technology, molecular and isotopic techniques can provide novel insights into migration connectivity, paths and ecology for species in this migration system, complementing data from banding exercises and observation-based surveys, and could prove useful in informing conservation priorities. However, until most states along the East Asian-Australasian flyway ratify the Convention on the Conservation of Migratory Species of Wild Animals (CMS) and other cross-boundary treaties, the relative lack of cross-boundary cooperation, coordination and information sharing in the region will continue to present a stumbling block for effective conservation of migratory passerines.


2011 ◽  
Vol 279 (1730) ◽  
pp. 1008-1016 ◽  
Author(s):  
Anders P. Tøttrup ◽  
Raymond H. G. Klaassen ◽  
Roine Strandberg ◽  
Kasper Thorup ◽  
Mikkel Willemoes Kristensen ◽  
...  

The small size of the billions of migrating songbirds commuting between temperate breeding sites and the tropics has long prevented the study of the largest part of their annual cycle outside the breeding grounds. Using light-level loggers (geolocators), we recorded the entire annual migratory cycle of the red-backed shrike Lanius collurio , a trans-equatorial Eurasian-African passerine migrant. We tested differences between autumn and spring migration for nine individuals. Duration of migration between breeding and winter sites was significantly longer in autumn (average 96 days) when compared with spring (63 days). This difference was explained by much longer staging periods during autumn (71 days) than spring (9 days). Between staging periods, the birds travelled faster during autumn (356 km d –1 ) than during spring (233 km d –1 ). All birds made a protracted stop (53 days) in Sahelian sub-Sahara on southbound migration. The birds performed a distinct loop migration (22 000 km) where spring distance, including a detour across the Arabian Peninsula, exceeded the autumn distance by 22 per cent. Geographical scatter between routes was particularly narrow in spring, with navigational convergence towards the crossing point from Africa to the Arabian Peninsula. Temporal variation between individuals was relatively constant, while different individuals tended to be consistently early or late at different departure/arrival occasions during the annual cycle. These results demonstrate the existence of fundamentally different spatio-temporal migration strategies used by the birds during autumn and spring migration, and that songbirds may rely on distinct staging areas for completion of their annual cycle, suggesting more sophisticated endogenous control mechanisms than merely clock-and-compass guidance among terrestrial solitary migrants. After a century with metal-ringing, year-round tracking of long-distance migratory songbirds promises further insights into bird migration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chris P. F. Redfern

Abstract Background The extent to which pairs remain together during the annual cycle is a key question in the behavioural ecology of migratory birds. While a few species migrate and winter as family units, for most the extent to which breeding partners associate in the non-breeding season is unknown. The Arctic Tern (Sterna paradisaea) has one of the longest migrations of any species, and the aim of this study was to establish whether or not partners remain together after breeding. Methods Leg-mounted geolocators were fitted to breeding pairs of Arctic Terns nesting on the Farne Islands, Northumberland, UK. The devices were recovered for analysis the following year. Results Analysis of data for the six pairs which returned the following year showed that partners departed from the colony at different times after breeding and migrated independently to different Antarctic regions. Partners also departed from the Antarctic and turned to the breeding colony independently. One third of the pairs divorced on return. Conclusions For long-distance migrants reliant on unpredictable foraging opportunities, it may not be viable to remain as pairs away from the breeding colony. Synchrony in arrival times at the breeding colony may maximise the chance of retaining a familiar partner, but could be affected by environmental factors in wintering areas or along migration routes.


2014 ◽  
Vol 84 (1) ◽  
pp. 155-165 ◽  
Author(s):  
D. T. Tyler Flockhart ◽  
Jean-Baptiste Pichancourt ◽  
D. Ryan Norris ◽  
Tara G. Martin

2018 ◽  
Vol 96 (12) ◽  
pp. 1353-1365 ◽  
Author(s):  
D.E. Meattey ◽  
S.R. McWilliams ◽  
P.W.C. Paton ◽  
C. Lepage ◽  
S.G. Gilliland ◽  
...  

Understanding full annual cycle movements of long-distance migrants is essential for delineating populations, assessing connectivity, evaluating crossover effects between life stages, and informing management strategies for vulnerable or declining species. We used implanted satellite transmitters to track up to 2 years of annual cycle movements of 52 adult female White-winged Scoters (Melanitta fusca (Linnaeus, 1758)) captured in the eastern United States and Canada. We used these data to document annual cycle phenology; delineate migration routes; identify primary areas used during winter, stopover, breeding, and molt; and assess the strength of migratory connectivity and spatial population structure. Most White-winged Scoters wintered along the Atlantic coast from Nova Scotia to southern New England, with some on Lake Ontario. White-winged Scoters followed four migration routes to breeding areas from Quebec to the Northwest Territories. Principal postbreeding molting areas were in James Bay and the St. Lawrence River estuary. Migration phenology was synchronous regardless of winter or breeding origin. Cluster analyses delineated two primary breeding areas: one molting area and one wintering area. White-winged Scoters demonstrated overall weak to moderate connectivity among life stages, with molting to wintering connectivity the strongest. Thus, White-winged Scoters that winter in eastern North America appear to constitute a single continuous population.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260339
Author(s):  
Bryan D. Watts ◽  
Fletcher M. Smith ◽  
Chance Hines ◽  
Laura Duval ◽  
Diana J. Hamilton ◽  
...  

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


2007 ◽  
Vol 363 (1490) ◽  
pp. 247-266 ◽  
Author(s):  
Deborah M Buehler ◽  
Theunis Piersma

Long-distance migration, and the study of the migrants who undertake these journeys, has fascinated generations of biologists. However, many aspects of the annual cycles of these migrants remain a mystery as do many of the driving forces behind the evolution and maintenance of the migrations themselves. In this article we discuss nutritional, energetic, temporal and disease - risk bottlenecks in the annual cycle of long-distance migrants, taking a sandpiper, the red knot Calidris canutus , as a focal species. Red knots have six recognized subspecies each with different migratory routes, well-known patterns of connectivity and contrasting annual cycles. The diversity of red knot annual cycles allows us to discuss the existence and the effects of bottlenecks in a comparative framework. We examine the evidence for bottlenecks focusing on the quality of breeding plumage and the timing of moult as indicators in the six subspecies. In terms of breeding plumage coloration, quality and timing of prealternate body moult (from non-breeding into breeding plumage), the longest migrating knot subspecies, Calidris canutus rogersi and Calidris canutus rufa , show the greatest impact of bottlenecking. The same is true in terms of prebasic body moult (from breeding into non-breeding plumage) which in case of both C. c. rogersi and C. c. rufa overlaps with southward migration and may even commence in the breeding grounds. To close our discussion of bottlenecks in long-distance migrants, we make predictions about how migrants might be impacted via physiological ‘trade-offs’ throughout the annual cycle, using investment in immune function as an example. We also predict how bottlenecks may affect the distribution of mortality throughout the annual cycle. We hope that this framework will be applicable to other species and types of migrants, thus expanding the comparative database for the future evaluation of seasonal selection pressures and the evolution of annual cycles in long-distance migrants. Furthermore, we hope that this synthesis of recent advancements in the knowledge of red knot annual cycles will prove useful in the ongoing attempts to model annual cycles in migratory birds.


Sign in / Sign up

Export Citation Format

Share Document