scholarly journals A full annual perspective on sex-biased migration timing in long-distance migratory birds

2019 ◽  
Vol 286 (1897) ◽  
pp. 20182821 ◽  
Author(s):  
Martins Briedis ◽  
Silke Bauer ◽  
Peter Adamík ◽  
José A. Alves ◽  
Joana S. Costa ◽  
...  

In many taxa, the most common form of sex-biased migration timing is protandry—the earlier arrival of males at breeding areas. Here we test this concept across the annual cycle of long-distance migratory birds. Using more than 350 migration tracks of small-bodied trans-Saharan migrants, we quantify differences in male and female migration schedules and test for proximate determinants of sex-specific timing. In autumn, males started migration about 2 days earlier, but this difference did not carry over to arrival at the non-breeding sites. In spring, males on average departed from the African non-breeding sites about 3 days earlier and reached breeding sitesca4 days ahead of females. A cross-species comparison revealed large variation in the level of protandry and protogyny across the annual cycle. While we found tight links between individual timing of departure and arrival within each migration season, only for males the timing of spring migration was linked to the timing of previous autumn migration. In conclusion, our results demonstrate that protandry is not exclusively a reproductive strategy but rather occurs year-round and the two main proximate determinants for the magnitude of sex-biased arrival times in autumn and spring are sex-specific differences in departure timing and migration duration.

2016 ◽  
Vol 283 (1839) ◽  
pp. 20161366 ◽  
Author(s):  
Barbara M. Tomotani ◽  
Phillip Gienapp ◽  
Domien G. M. Beersma ◽  
Marcel E. Visser

Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4304 ◽  
Author(s):  
Dongping Liu ◽  
Guogang Zhang ◽  
Hongxing Jiang ◽  
Jun Lu

Migratory birds often follow detours when confronted with ecological barriers, and understanding the extent and the underlying drivers of such detours can provide important insights into the associated cost to the annual energy budget and the migration strategies. The Qinghai-Tibetan Plateau is the most daunting geographical barrier for migratory birds because the partial pressure of oxygen is dramatically reduced and flight costs greatly increase. We analyzed the repeated migration detours and habitat associations of four Pallas’s Gulls Larus ichthyaetus across the Qinghai-Tibetan Plateau over 22 migration seasons. Gulls exhibited notable detours, with the maximum distance being more than double that of the expected shortest route, that extended rather than reduced the passage across the plateau. The extent of longitudinal detours significantly increased with latitude, and detours were longer in autumn than in spring. Compared with the expected shortest routes, proximity to water bodies increased along autumn migration routes, but detour-habitat associations were weak along spring migration routes. Thus, habitat availability was likely one, but not the only, factor shaping the extent of detours, and migration routes were determined by different mechanisms between seasons. Significant between-individual variation but high individual consistency in migration timing and routes were revealed in both seasons, indicating a stronger influence of endogenous schedules than local environmental conditions. Gulls may benefit from repeated use of familiar routes and stopover sites, which may be particularly significant in the challenging environment of the Qinghai-Tibetan Plateau.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chris P. F. Redfern

Abstract Background The extent to which pairs remain together during the annual cycle is a key question in the behavioural ecology of migratory birds. While a few species migrate and winter as family units, for most the extent to which breeding partners associate in the non-breeding season is unknown. The Arctic Tern (Sterna paradisaea) has one of the longest migrations of any species, and the aim of this study was to establish whether or not partners remain together after breeding. Methods Leg-mounted geolocators were fitted to breeding pairs of Arctic Terns nesting on the Farne Islands, Northumberland, UK. The devices were recovered for analysis the following year. Results Analysis of data for the six pairs which returned the following year showed that partners departed from the colony at different times after breeding and migrated independently to different Antarctic regions. Partners also departed from the Antarctic and turned to the breeding colony independently. One third of the pairs divorced on return. Conclusions For long-distance migrants reliant on unpredictable foraging opportunities, it may not be viable to remain as pairs away from the breeding colony. Synchrony in arrival times at the breeding colony may maximise the chance of retaining a familiar partner, but could be affected by environmental factors in wintering areas or along migration routes.


2019 ◽  
Vol 286 (1894) ◽  
pp. 20181916 ◽  
Author(s):  
Elizabeth A. Gow ◽  
Lauren Burke ◽  
David W. Winkler ◽  
Samantha M. Knight ◽  
David W. Bradley ◽  
...  

Latitudinal differences in timing of breeding are well documented but how such differences carry over to influence timing of events in the annual cycle of migratory birds is not well understood. We examined geographical variation in timing of events throughout the year using light-level geolocator tracking data from 133 migratory tree swallows ( Tachycineta bicolor ) originating from 12 North American breeding populations. A swallow's breeding latitude influenced timing of breeding, which then carried over to affect breeding ground departure. This resulted in subsequent effects on the arrival and departure schedules at autumn stopover locations and timing of arrival at non-breeding locations. This ‘domino effect’ between timing events was no longer apparent by the time individuals departed for spring migration. Our range-wide analysis demonstrates the lasting impact breeding latitude can have on migration schedules but also highlights how such timing relationships can reset when individuals reside at non-breeding sites for extended periods of time.


The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Tara L Imlay ◽  
Frédéric Angelier ◽  
Keith A Hobson ◽  
Gabriela Mastromonaco ◽  
Sarah Saldanha ◽  
...  

Abstract Carry-over effects from one stage of the annual cycle to subsequent stages can have profound effects on individual fitness. In migratory birds, much research has been devoted to examining such effects from the nonbreeding to the breeding period. We investigated potential carry-over effects influencing spring body condition, breeding phenology, and performance for 3 species of sympatric, declining Nearctic–Neotropical migratory swallows: Bank Swallow (Riparia riparia), Barn Swallow (Hirundo rustica), and Cliff Swallow (Petrochelidon pyrrhonota). To examine carry-over effects, we used structural equation modeling and several intrinsic markers, including stable isotope (δ 2H, δ 13C, and δ 15N) and corticosterone (CORTf) values from winter molted-feathers, and changes in telomere length between breeding seasons. We found support for carry-over effects for all 3 species, however, the specific relationships varied between species and sexes. Effects leading to lower breeding performance were only observed in male Bank, female Barn, and female and male Cliff Swallows. In most cases, carry-over effects were attributed to differences in stable isotope values (most commonly with δ 2H) presumably related to differences in winter habitat use, but, for Cliff Swallows, negative carry-over effects were also linked to higher CORTf values and greater rates of telomere shortening. This work provides further support for the potential role of nonbreeding conditions on population declines, and indicates how multiple intrinsic markers can be used to provide information on ecological conditions throughout the annual cycle.


2017 ◽  
Vol 28 (1) ◽  
pp. 1-26 ◽  
Author(s):  
NICHOLAS J. BAYLY ◽  
KENNETH V. ROSENBERG ◽  
WENDY E. EASTON ◽  
CAMILA GÓMEZ ◽  
JAY CARLISLE ◽  
...  

SummaryNearly 300 species of landbirds, whose populations total billions, migrate between the Neotropics and North America. Many migratory populations are in steep decline, and migration is often identified as the greatest source of annual mortality. Identifying birds’ needs on migration is therefore central to designing conservation actions for Nearctic-Neotropical migratory birds; yet migration through the Neotropics is a significant knowledge gap in our understanding of the full annual cycle. Here, we synthesise current knowledge of Neotropical stopover regions and migratory bottlenecks, focusing on long-distance, migratory landbirds that spend the boreal winter in South America. We make the important distinction between “true” stopover—involving multi-day refuelling stops—and rest-roost stops lasting < 24 hours, citing a growing number of studies that show individual landbirds making long stopovers in just a few strategic areas, to accumulate large energy reserves for long-distance flights. Based on an exhaustive literature search, we found few published stopover studies from the Neotropics, but combined with recent tracking studies, they describe prolonged stopovers for multiple species in the Orinoco grasslands (Llanos), the Sierra Nevada de Santa Marta (Colombia), and the Yucatan Peninsula. Bottlenecks for diurnal migrants are well described, with the narrowing Central American geography concentrating millions of migrating raptors at several points in SE Mexico, Costa Rica, Panama and the Darién. However, diurnally migrating aerial insectivores remain understudied, and determining stopover/roost sites for this steeply declining group is a priority. Despite advances in our knowledge of migration in the Neotropics, we conclude that major knowledge gaps persist. To identify stopover sites and habitats and the threats they face, we propose a targeted and collaborative research agenda at an expanded network of Neotropical sites, within the context of regional conservation planning strategies.


2018 ◽  
Vol 14 (12) ◽  
pp. 20180741 ◽  
Author(s):  
Michael T. Hallworth ◽  
Peter P. Marra ◽  
Kent P. McFarland ◽  
Sara Zahendra ◽  
Colin E. Studds

Insect migration is globally ubiquitous and can involve continental-scale movements and complex life histories. Apart from select species of migratory moths and butterflies, little is known about the structure of the annual cycle for migratory insects. Using stable-hydrogen isotope analysis of 852 wing samples from eight countries spanning 140 years, combined with 21 years of citizen science data, we determined the full annual cycle of a large migratory dragonfly, the common green darner ( Anax junius ). We demonstrate that darners undertake complex long-distance annual migrations governed largely by temperature that involve at least three generations. In spring, the first generation makes a long-distance northbound movement (further than 650 km) from southern to northern range limits, lays eggs and dies. A second generation emerges and returns south (further than 680 km), where they lay eggs and die. Finally, a third resident generation emerges, reproducing locally and giving rise to the cohort that migrates north the following spring. Since migration timing and nymph development are highly dependent on temperature, continued climate change could lead to fundamental changes in the biology for this and similar migratory insects.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jay Zaifman ◽  
Daoyang Shan ◽  
Ahmet Ay ◽  
Ana Gabriela Jimenez

Bird migration is a synchronized event that has evolved over thousands of years. Changing temperatures due to climate change threaten the intricacies of migration timing for birds; however, the extent of these changes has only recently begun to be addressed. Utilizing data from the citizen-science website eBird and historical temperature data, we analyzed bird migration timing in two states warming quickly (Alaska and Maine) and one warming gradually (South Carolina). Using linear regressions, we looked at relationships between different temperature indices and year with bird migration timing from 2010 to 2016. Bird migration through all three states, regardless of warming rate, showed similar rates of alterations. Additionally, in every state over half of the birds that had altered migration timing were long-distance migrants. Furthermore, we performed feature selection to determine important factors for changing migration timing of birds. Changes to summer resident and transient bird migration were most influenced by state. In winter resident migration, departure date and length of stay were most influenced by maximum temperature, while arrival date was most associated with minimum temperature. Relationships between changing temperatures and migration timing suggest that global climate change may have consequential effects on all bird migration patterns throughout the United States.


Sign in / Sign up

Export Citation Format

Share Document