scholarly journals Compressive sensing based secure data aggregation scheme for IoT based WSN applications

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260634
Author(s):  
Ahmed Salim ◽  
Ahmed Ismail ◽  
Walid Osamy ◽  
Ahmed M. Khedr

Compressive Sensing (CS) based data collection schemes are found to be effective in enhancing the data collection performance and lifetime of IoT based WSNs. However, they face major challenges related to key distribution and adversary attacks in hostile and complex network deployments. As a result, such schemes cannot effectively ensure the security of data. Towards the goal of providing high security and efficiency in data collection performance of IoT based WSNs, we propose a new security scheme that amalgamates the advantages of CS and Elliptic Curve Cryptography (ECC). We present an efficient algorithms to enhance the security and efficiency of CS based data collection in IoT-based WSNs. The proposed scheme operates in five main phases, namely Key Generation, CS-Key Exchange, Data Compression with CS Encryption, Data Aggregation and Encryption with ECC algorithm, and CS Key Re-generation. It considers the benefits of ECC as public key algorithm and CS as encryption and compression method to provide security as well as energy efficiency for cluster based WSNs. Also, it solves the CS- Encryption key distribution problem by introducing a new key sharing method that enables secure exchange of pseudo-random key between the BS and the nodes in a simple way. In addition, a new method is introduced to safeguard the CS scheme from potential security attacks. The efficiency of our proposed technique in terms of security, energy consumption and network lifetime is proved through simulation analysis.

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 208
Author(s):  
Xiangqing Wang ◽  
Jie Zhang ◽  
Bo Wang ◽  
Kongni Zhu ◽  
Haokun Song ◽  
...  

With the increase in the popularity of cloud computing and big data applications, the amount of sensitive data transmitted through optical networks has increased dramatically. Furthermore, optical transmission systems face various security risks at the physical level. We propose a novel key distribution scheme based on signal-to-noise ratio (SNR) measurements to extract the fingerprint of the fiber channel and improve the physical level of security. The SNR varies with time because the fiber channel is affected by many physical characteristics, such as dispersion, polarization, scattering, and amplifier noise. The extracted SNR of the optical fiber channel can be used as the basis of key generation. Alice and Bob can obtain channel characteristics by measuring the SNR of the optical fiber channel and generate the consistent key by quantization coding. The security and consistency of the key are guaranteed by the randomness and reciprocity of the channel. The simulation results show that the key generation rate (KGR) can reach 25 kbps, the key consistency rate (KCR) can reach 98% after key post-processing, and the error probability of Eve’s key is ~50%. In the proposed scheme, the equipment used is simple and compatible with existing optic fiber links.


2021 ◽  
Author(s):  
Chengpeng Huang ◽  
Xiaoming Wang ◽  
Qingqing Gan ◽  
Daxin Huang ◽  
Mengting Yao ◽  
...  

Laser Physics ◽  
2010 ◽  
Vol 20 (5) ◽  
pp. 1210-1214 ◽  
Author(s):  
F. A. A. El-Orany ◽  
M. R. B. Wahiddin ◽  
M. -A. Mat-Nor ◽  
N. Jamil ◽  
I. Bahari

Sign in / Sign up

Export Citation Format

Share Document