scholarly journals An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression

2015 ◽  
Vol 11 (7) ◽  
pp. e1005063 ◽  
Author(s):  
Gilles Darcis ◽  
Anna Kula ◽  
Sophie Bouchat ◽  
Koh Fujinaga ◽  
Francis Corazza ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
pp. 491-514
Author(s):  
Anthony Rodari ◽  
Gilles Darcis ◽  
Carine M. Van Lint

Combinatory antiretroviral therapy (cART) reduces human immunodeficiency virus type 1 (HIV-1) replication but is not curative because cART interruption almost invariably leads to a rapid rebound of viremia due to the persistence of stable HIV-1-infected cellular reservoirs. These reservoirs are mainly composed of CD4+ T cells harboring replication-competent latent proviruses. A broadly explored approach to reduce the HIV-1 reservoir size, the shock and kill strategy, consists of reactivating HIV-1 gene expression from the latently infected cellular reservoirs (the shock), followed by killing of the virus-producing infected cells (the kill). Based on improved understanding of the multiple molecular mechanisms controlling HIV-1 latency, distinct classes of latency reversing agents (LRAs) have been studied for their efficiency to reactivate viral gene expression in in vitro and ex vivo cell models. Here, we provide an up-to-date review of these different mechanistic classes of LRAs and discuss optimizations of the shock strategy by combining several LRAs simultaneously or sequentially.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Sebla B. Kutluay ◽  
Ann Emery ◽  
Srinivasa R. Penumutchu ◽  
Dana Townsend ◽  
Kasyap Tenneti ◽  
...  

ABSTRACT Alternative splicing of HIV-1 mRNAs increases viral coding potential and controls the levels and timing of gene expression. HIV-1 splicing is regulated in part by heterogeneous nuclear ribonucleoproteins (hnRNPs) and their viral target sequences, which typically repress splicing when studied outside their native viral context. Here, we determined the location and extent of hnRNP binding to HIV-1 mRNAs and their impact on splicing in a native viral context. Notably, hnRNP A1, hnRNP A2, and hnRNP B1 bound to many dispersed sites across viral mRNAs. Conversely, hnRNP H1 bound to a few discrete purine-rich sequences, a finding that was mirrored in vitro. hnRNP H1 depletion and mutation of a prominent viral RNA hnRNP H1 binding site decreased the use of splice acceptor A1, causing a deficit in Vif expression and replicative fitness. This quantitative framework for determining the regulatory inputs governing alternative HIV-1 splicing revealed an unexpected splicing enhancer role for hnRNP H1 through binding to its target element. IMPORTANCE Alternative splicing of HIV-1 mRNAs is an essential yet quite poorly understood step of virus replication that enhances the coding potential of the viral genome and allows the temporal regulation of viral gene expression. Although HIV-1 constitutes an important model system for general studies of the regulation of alternative splicing, the inputs that determine the efficiency with which splice sites are utilized remain poorly defined. Our studies provide an experimental framework to study an essential step of HIV-1 replication more comprehensively and in much greater detail than was previously possible and reveal novel cis-acting elements regulating HIV-1 splicing.


Retrovirology ◽  
2009 ◽  
Vol 6 (S2) ◽  
Author(s):  
Mahesh Bachu ◽  
Rajesh V Murali ◽  
Anil MHKH Babu ◽  
Venkat SRK Yedavalli ◽  
Kuan-Teh Jeang ◽  
...  

2022 ◽  
Author(s):  
Bibiana Costa ◽  
Jennifer Becker ◽  
Tobias Krammer ◽  
Felix Mulenge ◽  
Verónica Durán ◽  
...  

Abstract Human cytomegalovirus (HCMV) is a widespread obligatory human pathogen causing life-threatening disease in immunocompromised hosts. Myeloid cells such as monocyte-derived dendritic cells (moDCs) are targets of HCMV. Here, we performed single-cell RNA sequencing, which revealed infection of most moDCs upon in vitro HCMV exposure, whereas only a fraction of them initiated viral gene expression. We identified three moDC subsets, of which CD1a−/CD86− cells showed the highest susceptibility. Upon HCMV entry, STING activation not only induced IFN-β, but also promoted viral gene expression. Upon progression of infection, IFN-β but not IFN-λ1 expression was inhibited. Similarly, ISG expression was initially induced and then shut off and thus allowed productive infection. Increased viral gene expression was associated with the induction of several pro- (RHOB, HSP1A1, DNAJB1) and anti-viral (RNF213, TNFSF10, IFI16) genes. Thus, moDC permissiveness to HCMV depends on complex interactions between virus sensing, regulation of IFNs/ISGs and viral gene expression.


2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Luna Li ◽  
Satinder Dahiya ◽  
Sandhya Kortagere ◽  
Benjamas Aiamkitsumrit ◽  
David Cunningham ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined. Genetic variation withintatof different HIV-1 subtypes has been shown to affect the interaction of the viral transactivator with cellular and/or viral proteins, influencing the overall level of transcriptional activation as well as its action as a neurotoxic protein. Consequently, the genetic variability withintatmay impact the molecular architecture of functional domains of the Tat protein that may impact HIV pathogenesis and disease. Tat as a therapeutic target for anti-HIV drugs has also been discussed.


2017 ◽  
Vol 3 ◽  
pp. 8
Author(s):  
R. Verdikt ◽  
L. Colin ◽  
C. Vanhulle ◽  
B. Van Driessche ◽  
A. Kula ◽  
...  

Virology ◽  
1990 ◽  
Vol 177 (1) ◽  
pp. 380-383 ◽  
Author(s):  
V.S. Kalyanaraman ◽  
V. Rodriguez ◽  
S. Josephs ◽  
R.C. Gallo ◽  
M.G. Sarngadharan

2007 ◽  
Vol 81 (8) ◽  
pp. 3949-3968 ◽  
Author(s):  
Sathish Sadagopan ◽  
Neelam Sharma-Walia ◽  
Mohanan Valiya Veettil ◽  
Hari Raghu ◽  
Ramu Sivakumar ◽  
...  

ABSTRACT In vitro Kaposi's sarcoma-associated herpesvirus (KSHV) infection of primary human dermal microvascular endothelial (HMVEC-d) cells and human foreskin fibroblast (HFF) cells is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, and induction of several cytokines, growth factors, and angiogenic factors. Since NF-κB is a key molecule involved in the regulation of several of these factors, here, we examined NF-κB induction during de novo infection of HMVEC-d and HFF cells. Activation of NF-κB was observed as early as 5 to 15 min postinfection by KSHV, and translocation of p65-NF-κB into nuclei was detected by immunofluorescence assay, electrophoretic mobility shift assay, and p65 enzyme-linked immunosorbent assay. IκB phosphorylation inhibitor (Bay11-7082) reduced this activation significantly. A sustained moderate level of NF-κB induction was seen during the observed 72 h of in vitro KSHV latency. In contrast, high levels of ERK1/2 activation at earlier time points and a moderate level of activation at later times were observed. p38 mitogen-activated protein kinase was activated only at later time points, and AKT was activated in a cyclic manner. Studies with UV-inactivated KSHV suggested a role for virus entry stages in NF-κB induction and a requirement for KSHV viral gene expression in sustained induction. Inhibition of NF-κB did not affect target cell entry by KSHV but significantly reduced the expression of viral latent open reading frame 73 and lytic genes. KSHV infection induced the activation of several host transcription factors, including AP-1 family members, as well as several cytokines, growth factors, and angiogenic factors, which were significantly affected by NF-κB inhibition. These results suggest that during de novo infection, KSHV induces sustained levels of NF-κB to regulate viral and host cell genes and thus possibly regulates the establishment of latent infection.


2019 ◽  
Vol 26 (2) ◽  
pp. 217-227.e6 ◽  
Author(s):  
David G. Courtney ◽  
Kevin Tsai ◽  
Hal P. Bogerd ◽  
Edward M. Kennedy ◽  
Brittany A. Law ◽  
...  

1999 ◽  
Vol 19 (7) ◽  
pp. 4592-4599 ◽  
Author(s):  
Paul D. Bieniasz ◽  
Therese A. Grdina ◽  
Hal P. Bogerd ◽  
Bryan R. Cullen

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Tat protein (hTat) activates transcription initiated at the viral long terminal repeat (LTR) promoter by a unique mechanism requiring recruitment of the human cyclin T1 (hCycT1) cofactor to the viral TAR RNA target element. While activation of equine infectious anemia virus (EIAV) gene expression by the EIAV Tat (eTat) protein appears similar in that the target element is a promoter proximal RNA, eTat shows little sequence homology to hTat, does not activate the HIV-1 LTR, and is not active in human cells that effectively support hTat function. To address whether eTat and hTat utilize similar or distinct mechanisms of action, we have cloned the equine homolog of hCycT1 (eCycT1) and examined whether it is required to mediate eTat function. Here, we report that expression of eCycT1 in human cells fully rescues eTat function and that eCycT1 and eTat form a protein complex that specifically binds to the EIAV, but not the HIV-1, TAR element. While hCycT1 is also shown to interact with eTat, the lack of eTat function in human cells is explained by the failure of the resultant protein complex to bind to EIAV TAR. Critical sequences in eCycT1 required to support eTat function are located very close to the amino terminus, i.e., distal to the HIV-1 Tat-TAR interaction motif previously identified in the hCycT1 protein. Together, these data provide a molecular explanation for the species tropism displayed by eTat and demonstrate that highly divergent lentiviral Tat proteins activate transcription from their cognate LTR promoters by essentially identical mechanisms.


Sign in / Sign up

Export Citation Format

Share Document