scholarly journals ATRX limits the accessibility of histone H3-occupied HSV genomes during lytic infection

2021 ◽  
Vol 17 (4) ◽  
pp. e1009567
Author(s):  
Joseph M. Cabral ◽  
Camille H. Cushman ◽  
Catherine N. Sodroski ◽  
David M. Knipe

Histones are rapidly loaded on the HSV genome upon entry into the nucleus of human fibroblasts, but the effects of histone loading on viral replication have not been fully defined. We showed recently that ATRX is dispensable for de novo deposition of H3 to HSV genomes after nuclear entry but restricted infection through maintenance of viral heterochromatin. To further investigate the roles that ATRX and other histone H3 chaperones play in restriction of HSV, we infected human fibroblasts that were systematically depleted of nuclear H3 chaperones. We found that the ATRX/DAXX complex is unique among nuclear H3 chaperones in its capacity to restrict ICP0-null HSV infection. Only depletion of ATRX significantly alleviated restriction of viral replication. Interestingly, no individual nuclear H3 chaperone was required for deposition of H3 onto input viral genomes, suggesting that during lytic infection, H3 deposition may occur through multiple pathways. ChIP-seq for total histone H3 in control and ATRX-KO cells infected with ICP0-null HSV showed that HSV DNA is loaded with high levels of histones across the entire viral genome. Despite high levels of H3, ATAC-seq analysis revealed that HSV DNA is highly accessible, especially in regions of high GC content, and is not organized largely into ordered nucleosomes during lytic infection. ATRX reduced accessibility of viral DNA to the activity of a TN5 transposase and enhanced accumulation of viral DNA fragment sizes associated with nucleosome-like structures. Together, these findings support a model in which ATRX restricts viral infection by altering the structure of histone H3-loaded viral chromatin that reduces viral DNA accessibility for transcription. High GC rich regions of the HSV genome, especially the S component inverted repeats of the HSV-1 genome, show increased accessibility, which may lead to increased ability to transcribe the IE genes encoded in these regions during initiation of infection.

2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Kui Yang ◽  
Xiaoqun Dang ◽  
Joel D. Baines

ABSTRACT Monomeric herpesvirus DNA is cleaved from concatemers and inserted into preformed capsids through the actions of the viral terminase. The terminase of herpes simplex virus (HSV) is composed of three subunits encoded by UL15, UL28, and UL33. The UL33-encoded protein (pUL33) interacts with pUL28, but its precise role in the DNA cleavage and packaging reaction is unclear. To investigate the function of pUL33, we generated a panel of recombinant viruses with either deletions or substitutions in the most conserved regions of UL33 using a bacterial artificial chromosome system. Deletion of 11 amino acids (residues 50 to 60 or residues 110 to 120) precluded viral replication, whereas the truncation of the last 10 amino acids from the pUL33 C terminus did not affect viral replication or the interaction of pUL33 with pUL28. Mutations that replaced the lysine at codon 110 and the arginine at codon 111 with alanine codons failed to replicate, and the pUL33 mutant interacted with pUL28 less efficiently. Interestingly, genomic termini of the large (L) and small (S) components were detected readily in cells infected with these mutants, indicating that concatemeric DNA was cleaved efficiently. However, the release of monomeric genomes as assessed by pulsed-field gel electrophoresis was greatly diminished, and DNA-containing capsids were not observed. These results suggest that pUL33 is necessary for one of the two viral DNA cleavage events required to release individual genomes from concatemeric viral DNA. IMPORTANCE This paper shows a role for pUL33 in one of the two DNA cleavage events required to release monomeric genomes from concatemeric viral DNA. This is the first time that such a phenotype has been observed and is the first identification of a function of this protein relevant to DNA packaging other than its interaction with other terminase components.


2007 ◽  
Vol 81 (20) ◽  
pp. 10991-11004 ◽  
Author(s):  
Roger D. Everett ◽  
Jill Murray ◽  
Anne Orr ◽  
Chris M. Preston

ABSTRACT Herpes simplex virus type 1 (HSV-1) genomes become associated with structures related to cellular nuclear substructures known as ND10 or promyelocytic leukemia nuclear bodies during the early stages of lytic infection. This paper describes the relationship between HSV-1 genomes and ND10 in human fibroblasts that maintain the viral genomes in a quiescent state. We report that quiescent HSV-1 genomes detected by fluorescence in situ hybridization (FISH) are associated with enlarged ND10-like structures, frequently such that the FISH-defined viral foci are apparently enveloped within a sphere of PML and other ND10 proteins. The number of FISH viral foci in each quiescently infected cell is concordant with the input multiplicity of infection, with each structure containing no more than a small number of viral genomes. A proportion of the enlarged ND10-like foci in quiescently infected cells contain accumulations of the heterochromatin protein HP1 but not other common markers of heterochromatin such as histone H3 di- or trimethylated on lysine residue 9. Many of the virally induced enlarged ND10-like structures also contain concentrations of conjugated ubiquitin. Quiescent infections can be established in cells that are highly depleted for PML. However, during the initial stages of establishment of a quiescent infection in such cells, other ND10 proteins (Sp100, hDaxx, and ATRX) are recruited into virally induced foci that are likely to be associated with HSV-1 genomes. These observations illustrate that the intimate connections between HSV-1 genomes and ND10 that occur during lytic infection also extend to quiescent infections.


2021 ◽  
Author(s):  
Owen H Funk ◽  
Yaman Qalieh ◽  
Daniel Z Doyle ◽  
Mandy M Lam ◽  
Kenneth Y Kwan

Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide replacement histones in terminally post-mitotic cells, including neurons. Histone variants can also serve active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover at regulatory regions. Here, we find that newborn cortical excitatory neurons substantially accumulate the histone H3 variant H3.3 immediately post-mitosis. Co-deletion of H3.3-encoding genes H3f3a and H3f3b from new neurons abrogates this accumulation, and causes widespread disruptions in the developmental establishment of the neuronal transcriptome. These broad transcriptomic changes coincide with neuronal maturation phenotypes in acquisition of distinct neuronal identities and formation of axon tracts. Stage-dependent deletion of H3f3a and H3f3b from (1) cycling neural progenitor cells, (2) neurons immediately after terminal mitosis, or (3) several days later, reveals the first post-mitotic days as a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, co-deletion of H3f3a and H3f3b from neurons causes progressive H3.3 depletion over several months without widespread transcriptional disruptions. Our study thus uncovers a key role for H3.3 in establishing neuronal transcriptome, identity, and connectivity immediately post-mitosis that is distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.


2019 ◽  
Author(s):  
Christina J. Castro ◽  
Rachel L. Marine ◽  
Edward Ramos ◽  
Terry Fei Fan Ng

AbstractViruses have high mutation rates and generally exist as a mixture of variants in biological samples. Next-generation sequencing (NGS) approach has surpassed Sanger for generating long viral sequences, yet how variants affect NGS de novo assembly remains largely unexplored. Our results from >15,000 simulated experiments showed that presence of variants can turn an assembly of one genome into tens to thousands of contigs. This “variant interference” (VI) is highly consistent and reproducible by ten most used de novo assemblers, and occurs independent of genome length, read length, and GC content. The main driver of VI is pairwise identities between viral variants. These findings were further supported by in silico simulations, where selective removal of minor variant reads from clinical datasets allow the “rescue” of full viral genomes from fragmented contigs. These results call for careful interpretation of contigs and contig numbers from de novo assembly in viral deep sequencing.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuchen Zhang ◽  
Rui Guo ◽  
Sharon H. Kim ◽  
Hardik Shah ◽  
Shuting Zhang ◽  
...  

AbstractThe recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.


2007 ◽  
Vol 81 (18) ◽  
pp. 10123-10136 ◽  
Author(s):  
George Sourvinos ◽  
Nina Tavalai ◽  
Anja Berndt ◽  
Demetrios A. Spandidos ◽  
Thomas Stamminger

ABSTRACT The human cytomegalovirus (HCMV) immediate-early 2 (IE2) transactivator has previously been shown to form intranuclear, dot-like accumulations in association with subnuclear structures known as promyelocytic leukemia protein (PML) nuclear bodies or ND10. We recently observed that IE2 can form dot-like structures even after infection of PML knockdown cells, which lack genuine ND10. To further analyze the determinants of IE2 subnuclear localization, a recombinant HCMV expressing IE2 fused to the enhanced green fluorescent protein was constructed. We infected primary human fibroblasts expressing Sp100 fused to the autofluorescent protein mCherry while performing live-cell imaging experiments. These experiments revealed a very dynamic association of IE2 dots with ND10 structures during the first hours postinfection: juxtaposed structures rapidly fused to precise colocalizations, followed by segregation, and finally, the dispersal of ND10 accumulations. Furthermore, by infecting PML knockdown cells we determined that the number of IE2 accumulations was dependent on the multiplicity of infection. Since time-lapse microscopy in live-infected cells revealed that IE2 foci developed into viral replication compartments, we hypothesized that viral DNA could act as a determinant of IE2 accumulations. Direct evidence that IE2 molecules are associated with viral DNA early after HCMV infection was obtained using fluorescence in situ hybridization. Finally, a DNA-binding-deficient IE2 mutant could no longer be recruited into viral replication centers, suggesting that the association of IE2 with viral DNA is mediated by a direct DNA contact. Thus, we identified viral DNA as an important determinant of IE2 subnuclear localization, which suggests that the formation of a virus-induced nucleoprotein complex and its spatial organization is likely to be critical at the early stages of a lytic infection.


2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Robert Hollingworth ◽  
Richard D. Horniblow ◽  
Calum Forrest ◽  
Grant S. Stewart ◽  
Roger J. Grand

ABSTRACT Double-strand breaks (DSBs) in DNA are recognized by the Ku70/80 heterodimer and the MRE11-RAD50-NBS1 (MRN) complex and result in activation of the DNA-PK and ATM kinases, which play key roles in regulating the cellular DNA damage response (DDR). DNA tumor viruses such as Kaposi's sarcoma-associated herpesvirus (KSHV) are known to interact extensively with the DDR during the course of their replicative cycles. Here we show that during lytic amplification of KSHV DNA, the Ku70/80 heterodimer and the MRN complex consistently colocalize with viral genomes in replication compartments (RCs), whereas other DSB repair proteins form foci outside RCs. Depletion of MRE11 and abrogation of its exonuclease activity negatively impact viral replication, while in contrast, knockdown of Ku80 and inhibition of the DNA-PK enzyme, which are involved in nonhomologous end joining (NHEJ) repair, enhance amplification of viral DNA. Although the recruitment of DSB-sensing proteins to KSHV RCs is a consistent occurrence across multiple cell types, activation of the ATM-CHK2 pathway during viral replication is a cell line-specific event, indicating that recognition of viral DNA by the DDR does not necessarily result in activation of downstream signaling pathways. We have also observed that newly replicated viral DNA is not associated with cellular histones. Since the presence and modification of these DNA-packaging proteins provide a scaffold for docking of multiple DNA repair factors, the absence of histone deposition may allow the virus to evade localization of DSB repair proteins that would otherwise have a detrimental effect on viral replication. IMPORTANCE Tumor viruses are known to interact with machinery responsible for detection and repair of double-strand breaks (DSBs) in DNA, although detail concerning how Kaposi's sarcoma-associated herpesvirus (KSHV) modulates these cellular pathways during its lytic replication phase was previously lacking. By undertaking a comprehensive assessment of the localization of DSB repair proteins during KSHV replication, we have determined that a DNA damage response (DDR) is directed to viral genomes but is distinct from the response to cellular DNA damage. We also demonstrate that although recruitment of the MRE11-RAD50-NBS1 (MRN) DSB-sensing complex to viral genomes and activation of the ATM kinase can promote KSHV replication, proteins involved in nonhomologous end joining (NHEJ) repair restrict amplification of viral DNA. Overall, this study extends our understanding of the virus-host interactions that occur during lytic replication of KSHV and provides a deeper insight into how the DDR is manipulated during viral infection.


2016 ◽  
Vol 90 (7) ◽  
pp. 3411-3427 ◽  
Author(s):  
Paloma Hidalgo ◽  
Lourdes Anzures ◽  
Armando Hernández-Mendoza ◽  
Adán Guerrero ◽  
Christopher D. Wood ◽  
...  

ABSTRACTAdenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directedde novosynthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RCin vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses.IMPORTANCERC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they directde novosynthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.


2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Tim Schommartz ◽  
Jiajia Tang ◽  
Rebekka Brost ◽  
Wolfram Brune

ABSTRACT The UL112-113 gene is one of the few alternatively spliced genes of human cytomegalovirus (HCMV). It codes for four phosphoproteins, p34, p43, p50, and p84, all of which are expressed with early kinetics and accumulate at sites of viral DNA replication within the host cell nucleus. Although these proteins are known to play important, possibly essential, roles in the viral replication cycle, little is known about the contribution of individual UL112-113 protein products. Here we used splice site mutagenesis, intron deletion and substitution, and nonsense mutagenesis to prevent the individual expression of each UL112-113 protein isoform and to investigate the importance of each isoform for viral replication. We show that HCMV mutants lacking p34 or p50 expression replicated to high titers in human fibroblasts and endothelial cells, indicating that these proteins are nonessential for viral replication, while mutant viruses carrying a stop mutation within the p84 coding sequence were severely growth impaired. Viral replication could not be detected upon the inactivation of p43 expression, indicating that this UL112-113 protein is essential for viral replication. We also analyzed the ability of UL112-113 proteins to recruit other viral proteins to intranuclear prereplication compartments. While UL112-113 expression was sufficient to recruit the UL44-encoded viral DNA polymerase processivity factor, it was not sufficient for the recruitment of the viral UL84 and UL117 proteins. Remarkably, both the p43 and p84 isoforms were required for the efficient recruitment of pUL44, which is consistent with their critical role in the viral life cycle. IMPORTANCE Human cytomegalovirus requires gene products from 11 genetic loci for the lytic replication of its genome. One of these loci, UL112-113, encodes four proteins with common N termini by alternative splicing. In this study, we inactivated the expression of each of the four UL112-113 proteins individually and determined their requirement for HCMV replication. We found that two of the UL112-113 gene products were dispensable for viral replication in human fibroblasts and endothelial cells. In contrast, viral replication was severely reduced or absent when one of the other two gene products was inactivated, indicating that they are of crucial importance for the viral replication cycle. We further showed that the latter two gene products are involved in the recruitment of pUL44, an essential cofactor of the viral DNA polymerase, to specific sites within the cell nucleus that are thought to serve as starting points for viral DNA replication.


2006 ◽  
Vol 80 (16) ◽  
pp. 8006-8018 ◽  
Author(s):  
Nina Tavalai ◽  
Peer Papior ◽  
Sabine Rechter ◽  
Martina Leis ◽  
Thomas Stamminger

ABSTRACT Several viruses, including human cytomegalovirus (HCMV), encode proteins that colocalize with a cellular subnuclear structure known as ND10. Since only viral DNA deposited at ND10 initiates transcription, ND10 structures were hypothesized to be essential for viral replication. On the other hand, interferon treatment induces an up-regulation of ND10 structures and viruses have evolved polypeptides that disperse the dot-like accumulation of ND10 proteins, suggesting that ND10 could also be part of an intrinsic defense mechanism. In order to obtain evidence for either a proviral or an antiviral function of ND10, we generated primary human fibroblasts with a stable, short interfering RNA-mediated knockdown (kd) of PML. In these cells, other ND10-associated proteins like hDaxx showed a diffuse nuclear distribution. Interestingly, we observed that HCMV infection induced the de novo formation of ND10-like hDaxx and Sp100 accumulations that colocalized with IE2 and were disrupted, in the apparent absence of PML, in an IE1-dependent manner during the first hours after infection. Furthermore, infection of PML-kd cells with wild-type HCMV at a low multiplicity of infection resulted in enhanced replication. In particular, a significantly increased plaque formation was detected, suggesting that more cells are able to support initiation of replication in the absence of PML. While there was no difference in viral DNA uptake between PML-kd and control cells, we observed a considerable increase in the number of immediate-early (IE) protein-positive cells, indicating that the depletion of PML augments the initiation of viral IE gene expression. These results strongly suggest that PML functions as part of an intrinsic immune mechanism against cytomegalovirus infections.


Sign in / Sign up

Export Citation Format

Share Document