scholarly journals Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells

2016 ◽  
Vol 90 (7) ◽  
pp. 3411-3427 ◽  
Author(s):  
Paloma Hidalgo ◽  
Lourdes Anzures ◽  
Armando Hernández-Mendoza ◽  
Adán Guerrero ◽  
Christopher D. Wood ◽  
...  

ABSTRACTAdenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directedde novosynthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RCin vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses.IMPORTANCERC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they directde novosynthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.

2019 ◽  
Vol 261 ◽  
pp. 1-8 ◽  
Author(s):  
Juan Carlos Santos-Valencia ◽  
Clotilde Cancio-Lonches ◽  
Adrian Trujillo-Uscanga ◽  
Beatriz Alvarado-Hernández ◽  
Anel Lagunes-Guillén ◽  
...  

2015 ◽  
Vol 89 (11) ◽  
pp. 6057-6066 ◽  
Author(s):  
Colin Davies ◽  
Chris M. Brown ◽  
Dana Westphal ◽  
Joanna M. Ward ◽  
Vernon K. Ward

ABSTRACTMany viruses replicate most efficiently in specific phases of the cell cycle, establishing or exploiting favorable conditions for viral replication, although little is known about the relationship between caliciviruses and the cell cycle. Microarray and Western blot analysis of murine norovirus 1 (MNV-1)-infected cells showed changes in cyclin transcript and protein levels indicative of a G1phase arrest. Cell cycle analysis confirmed that MNV-1 infection caused a prolonging of the G1phase and an accumulation of cells in the G0/G1phase. The accumulation in G0/G1phase was caused by a reduction in cell cycle progression through the G1/S restriction point, with MNV-1-infected cells released from a G1arrest showing reduced cell cycle progression compared to mock-infected cells. MNV-1 replication was compared in populations of cells synchronized into specific cell cycle phases and in asynchronously growing cells. Cells actively progressing through the G1phase had a 2-fold or higher increase in virus progeny and capsid protein expression over cells in other phases of the cell cycle or in unsynchronized populations. These findings suggest that MNV-1 infection leads to prolonging of the G1phase and a reduction in S phase entry in host cells, establishing favorable conditions for viral protein production and viral replication. There is limited information on the interactions between noroviruses and the cell cycle, and this observation of increased replication in the G1phase may be representative of other members of theCaliciviridae.IMPORTANCENoroviruses have proven recalcitrant to growth in cell culture, limiting our understanding of the interaction between these viruses and the infected cell. In this study, we used the cell-culturable MNV-1 to show that infection of murine macrophages affects the G1/S cell cycle phase transition, leading to an arrest in cell cycle progression and an accumulation of cells in the G0/G1phase. Furthermore, we show that MNV replication is enhanced in the G1phase compared to other stages of the cell cycle. Manipulating the cell cycle or adapting to cell cycle responses of the host cell is a mechanism to enhance virus replication. To the best of our knowledge, this is the first report of a norovirus interacting with the host cell cycle and exploiting the favorable conditions of the G0/G1phase for RNA virus replication.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 473 ◽  
Author(s):  
Mei-Ling Cheng ◽  
Kun-Yi Chien ◽  
Chien-Hsueh Lai ◽  
Guan-Jie Li ◽  
Jui-Fen Lin ◽  
...  

Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.


2010 ◽  
Vol 84 (20) ◽  
pp. 10592-10605 ◽  
Author(s):  
Ruth L. O. Stricker ◽  
Sven-Erik Behrens ◽  
Egbert Mundt

ABSTRACT Two of the central issues in developing new strategies to interfere with viral infections concern the identification of cellular proteins involved in viral replication and/or antiviral measures and the dissection of the underlying molecular mechanisms. To gain initial insight into the role of host proteins in the life cycle of infectious bursal disease virus (IBDV), a double-stranded RNA virus, we examined the cellular nuclear factor 45 (NF45). NF45 was previously indicated to be involved in the replication process of other types of RNA viruses. Interestingly, by performing immunofluorescence studies, we found that in IBDV-infected cells the mainly nuclear NF45 accumulated at the sites of viral replication in the cytoplasm. NF45 was shown to specifically colocalize with the viral RNA-dependent RNA polymerase VP1, the capsid protein VP2, and the ribonucleoprotein VP3. Immunoprecipitation experiments indicated protein-protein associations between NF45 and VP1, VP2, and VP3. Expression of the individual VP3 or the combination of expression of VP1 and VP3 did not result in a cytoplasmic accumulation of NF45, which, among other data, showed that recruitment of the cellular protein in infected cells functionally correlates with the viral replication process. Since small interfering RNA(siRNA)-mediated downregulation of NF45 resulted in an approximately 5-fold increase of virus yield, our study suggests that NF45, by association with viral proteins, is part of a yet-uncharacterized cellular defense mechanism against IBDV infections.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Jill A. Dembowski ◽  
Neal A. DeLuca

ABSTRACTHerpesviruses utilize multiple mechanisms to redirect host proteins for use in viral processes and to avoid recognition and repression by the host. To investigate dynamic interactions between herpes simplex virus type 1 (HSV-1) DNA and viral and host proteins throughout infection, we developed an approach to identify proteins that associate with the infecting viral genome from nuclear entry through packaging. To accomplish this, virus stocks were prepared in the presence of ethynyl-modified nucleotides to enable covalent tagging of viral genomes after infection for analysis of viral genome-protein interactions by imaging or affinity purification. Affinity purification was combined with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry to enable the distinction between proteins that were brought into the cell by the virus or expressed within the infected cell before or during infection. We found that input viral DNA progressed within 6 h through four temporal stages where the genomes sequentially (i) interacted with intrinsic antiviral and DNA damage response proteins, (ii) underwent a robust transcriptional switch mediated largely by ICP4, (iii) engaged in replication, repair, and continued transcription, and then (iv) transitioned to a more transcriptionally inert state engagingde novo-synthesized viral structural components while maintaining interactions with replication proteins. Using a combination of genetic, imaging, and proteomic approaches, we provide a new and temporally compressed view of the HSV-1 life cycle based on input genome-proteome dynamics.IMPORTANCEHerpesviruses are highly prevalent and ubiquitous human pathogens. Studies of herpesviruses and other viruses have previously been limited by the ability to directly study events that occur on the viral DNA throughout infection. We present a new powerful approach, which allows for the temporal investigation of viral genome-protein interactions at all phases of infection. This work has integrated many results from previous studies with the discovery of novel factors potentially involved in viral infection that may represent new antiviral targets. In addition, the study provides a new view of the HSV-1 life cycle based on genome-proteome dynamics.


2016 ◽  
Author(s):  
Saisai Chen ◽  
Thomas Shenk ◽  
Maciej T. Nogalski

AbstractHuman cytomegalovirus (HCMV) manipulates many aspects of host cell biology to create an intracellular milieu optimally supportive of its replication and spread. The current study reveals a role for purinergic signaling in HCMV infection. The levels of several components of the purinergic signaling system, including the P2Y2 receptor, were altered in HCMV-infected fibroblasts. P2Y2 receptor RNA and protein are strongly induced following infection. Pharmacological inhibition of receptor activity or knockdown of receptor expression markedly reduced the production of infectious HCMV progeny. When P2Y2 activity was inhibited, the accumulation of most viral RNAs tested and viral DNA was reduced. In addition, the level of cytosolic calcium within infected cells was reduced when P2Y2 signaling was blocked. The HCMV-coded UL37x1 protein was previously shown to induce calcium flux from the smooth endoplasmic reticulum to the cytosol, and the present study demonstrates that P2Y2 function is required for this mobilization. We conclude that P2Y2 supports the production of HCMV progeny, possibly at multiple points within the viral replication cycle that interface with signaling pathways induced by the purinergic receptor.ImportanceHCMV infection is ubiquitous and can cause life-threatening disease in immunocompromised patients, debilitating birth defects in newborns, and has been increasingly associated with a wide range of chronic conditions. Such broad clinical implications result from the modulation of multiple host cell processes. This study documents that cellular purinergic signaling is usurped in HCMV-infected cells and that the function of this signaling axis is critical for efficient HCMV infection. Therefore, we speculate that blocking P2Y2 receptor activity has the potential to become an attractive novel treatment option for HCMV infection.


2008 ◽  
Vol 82 (13) ◽  
pp. 6654-6666 ◽  
Author(s):  
Valerie G. Preston ◽  
Jill Murray ◽  
Christopher M. Preston ◽  
Iris M. McDougall ◽  
Nigel D. Stow

ABSTRACT Studies on the herpes simplex virus type 1 UL25-null mutant KUL25NS have shown that the capsid-associated UL25 protein is required at a late stage in the encapsidation of viral DNA. Our previous work on UL25 with the UL25 temperature-sensitive (ts) mutant ts1204 also implicated UL25 in a role at very early times in the virus growth cycle, possibly at the stage of penetration of the host cell. We have reexamined this mutant and discovered that it had an additional ts mutation elsewhere in the genome. The ts1204 UL25 mutation was transferred into wild-type (wt) virus DNA, and the UL25 mutant ts1249 was isolated and characterized to clarify the function of UL25 at the initial stages of virus infection. Indirect immunofluorescence assays and in situ hybridization analysis of virus-infected cells revealed that the mutant ts1249 was not impaired in penetration of the host cell but had an uncoating defect at the nonpermissive temperature. When ts1249-infected cells were incubated initially at the permissive temperature to allow uncoating of the viral genome and subsequently transferred to the restrictive temperature, a DNA-packaging defect was evident. The results suggested that ts1249, like KUL25NS, had a block at a late stage of DNA packaging and that the packaged genome was shorter than the full-length genome. Examination of ts1249 capsids produced at the nonpermissive temperature revealed that, in comparison with wt capsids, they contained reduced amounts of UL25 protein, thereby providing a possible explanation for the failure of ts1249 to package full-length viral DNA.


2007 ◽  
Vol 82 (5) ◽  
pp. 2065-2078 ◽  
Author(s):  
Eva Maria Borst ◽  
Karen Wagner ◽  
Anne Binz ◽  
Beate Sodeik ◽  
Martin Messerle

ABSTRACT Replication of human cytomegalovirus (HCMV) produces large DNA concatemers of head-to-tail-linked viral genomes that upon packaging into capsids are cut into unit-length genomes. The mechanisms underlying cleavage-packaging and the subsequent steps prior to nuclear egress of DNA-filled capsids are incompletely understood. The hitherto uncharacterized product of the essential HCMV UL52 gene was proposed to participate in these processes. To investigate the function of pUL52, we constructed a ΔUL52 mutant as well as a complementing cell line. We found that replication of viral DNA was not impaired in noncomplementing cells infected with the ΔUL52 virus, but viral concatemers remained uncleaved. Since the subnuclear localization of the known cleavage-packaging proteins pUL56, pUL89, and pUL104 was unchanged in ΔUL52-infected fibroblasts, pUL52 does not seem to act via these proteins. Electron microscopy studies revealed only B capsids in the nuclei of ΔUL52-infected cells, indicating that the mutant virus has a defect in encapsidation of viral DNA. Generation of recombinant HCMV genomes encoding epitope-tagged pUL52 versions showed that only the N-terminally tagged pUL52 supported viral growth, suggesting that the C terminus is crucial for its function. pUL52 was expressed as a 75-kDa protein with true late kinetics. It localized preferentially to the nuclei of infected cells and was found to enclose the replication compartments. Taken together, our results demonstrate an essential role for pUL52 in cleavage-packaging of HCMV DNA. Given its unique subnuclear localization, the function of pUL52 might be distinct from that of other cleavage-packaging proteins.


2000 ◽  
Vol 74 (21) ◽  
pp. 10122-10131 ◽  
Author(s):  
Elizabeth E. McNamee ◽  
Travis J Taylor ◽  
David M. Knipe

ABSTRACT The d105 dominant-negative mutant form of the herpes simplex virus 1 (HSV-1) single-stranded DNA-binding protein, ICP8 (d105 ICP8), inhibits wild-type viral replication, and it blocks both viral DNA replication and late gene transcription, although to different degrees (M. Gao and D. M. Knipe, J. Virol. 65:2666–2675, 1991; Y. M. Chen and D. M. Knipe, Virology 221:281–290, 1996). We demonstrate here that this protein is also capable of preventing the formation of intranuclear prereplicative sites and replication compartments during HSV infection. We defined three patterns of ICP8 localization using indirect immunofluorescence staining of HSV-1-infected cells: large replication compartments, small compartments, and no specific intranuclear localization of ICP8. Cells that form large replication compartments replicate viral DNA and express late genes. Cells that form small replication compartments replicate viral DNA but do not express late genes, while cells without viral replication compartments are incapable of both DNA replication and late gene expression. The d105 ICP8 protein blocks formation of prereplicative sites and large replication compartments in 80% of infected cells and formation of large replication compartments in the remaining 20% of infected cells. The phenotype ofd105 suggests a correlation between formation of large replication compartments and late gene expression and a role for intranuclear rearrangement of viral DNA and bound proteins in activation of late gene transcription. Thus, these results provide evidence for specialized machinery for late gene expression within replication compartments.


Sign in / Sign up

Export Citation Format

Share Document