scholarly journals The viral nucleocapsid protein and the human RNA-binding protein Mex3A promote translation of the Andes orthohantavirus small mRNA

2021 ◽  
Vol 17 (9) ◽  
pp. e1009931
Author(s):  
Jorge Vera-Otarola ◽  
Estefania Castillo-Vargas ◽  
Jenniffer Angulo ◽  
Francisco M. Barriga ◽  
Eduard Batlle ◽  
...  

The capped Small segment mRNA (SmRNA) of the Andes orthohantavirus (ANDV) lacks a poly(A) tail. In this study, we characterize the mechanism driving ANDV-SmRNA translation. Results show that the ANDV-nucleocapsid protein (ANDV-N) promotes in vitro translation from capped mRNAs without replacing eukaryotic initiation factor (eIF) 4G. Using an RNA affinity chromatography approach followed by mass spectrometry, we identify the human RNA chaperone Mex3A (hMex3A) as a SmRNA-3’UTR binding protein. Results show that hMex3A enhances SmRNA translation in a 3’UTR dependent manner, either alone or when co-expressed with the ANDV-N. The ANDV-N and hMex3A proteins do not interact in cells, but both proteins interact with eIF4G. The hMex3A–eIF4G interaction showed to be independent of ANDV-infection or ANDV-N expression. Together, our observations suggest that translation of the ANDV SmRNA is enhanced by a 5’-3’ end interaction, mediated by both viral and cellular proteins.

2006 ◽  
Vol 17 (8) ◽  
pp. 3521-3533 ◽  
Author(s):  
Linda D. Kosturko ◽  
Michael J. Maggipinto ◽  
George Korza ◽  
Joo Won Lee ◽  
John H. Carson ◽  
...  

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


1985 ◽  
Vol 5 (3) ◽  
pp. 586-590
Author(s):  
A M Francoeur ◽  
E K Chan ◽  
J I Garrels ◽  
M B Mathews

HeLa cell La antigen, an RNA-binding protein, was characterized by using two-dimensional gel electrophoresis. Eight isoelectric forms (pI 6 to 7) were observed, many containing phosphate. An in vitro translation product similar in size and antigenicity was identified. The HeLa cell protein purified by using an assay based on ribonucleoprotein reconstitution with adenovirus VA RNAI also comprised several isoelectric forms.


2021 ◽  
Vol 118 (23) ◽  
pp. e2104650118
Author(s):  
Jessica Cannavino ◽  
Mengle Shao ◽  
Yu A. An ◽  
Svetlana Bezprozvannaya ◽  
Shiuhwei Chen ◽  
...  

Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.


1999 ◽  
Vol 112 (21) ◽  
pp. 3691-3702 ◽  
Author(s):  
W.L. Severt ◽  
T.U. Biber ◽  
X. Wu ◽  
N.B. Hecht ◽  
R.J. DeLorenzo ◽  
...  

Ribonucleoprotein particles (RNPs) are thought to be key players in somato-dendritic sorting of mRNAs in CNS neurons and are implicated in activity-directed neuronal remodeling. Here, we use reporter constructs and gel mobility shift assays to show that the testis brain RNA-binding protein (TB-RBP) associates with mRNPs in a sequence (Y element) dependent manner. Using antisense oligonucleotides (anti-ODN), we demonstrate that blocking the TB-RBP Y element binding site disrupts and mis-localizes mRNPs containing (alpha)-calmodulin dependent kinase II (alpha)-CAMKII) and ligatin mRNAs. In addition, we show that suppression of kinesin heavy chain motor protein alters only the localization of (alpha)-CAMKII mRNA. Thus, differential sorting of mRNAs involves multiple mRNPs and selective motor proteins permitting localized mRNAs to utilize common mechanisms for shared steps.


2009 ◽  
Vol 181 (4S) ◽  
pp. 153-153 ◽  
Author(s):  
Sabrina Danilin ◽  
Lionel Thomas ◽  
Thomas Charles ◽  
Carole Sourbier ◽  
Véronique Lindner ◽  
...  

Methods ◽  
2017 ◽  
Vol 118-119 ◽  
pp. 171-181 ◽  
Author(s):  
Tzu-Fang Lou ◽  
Chase A. Weidmann ◽  
Jordan Killingsworth ◽  
Traci M. Tanaka Hall ◽  
Aaron C. Goldstrohm ◽  
...  

Oncogene ◽  
1997 ◽  
Vol 14 (11) ◽  
pp. 1279-1286 ◽  
Author(s):  
Peter Leeds ◽  
Betsy T Kren ◽  
Joan M Boylan ◽  
Natalie A Betz ◽  
Clifford J Steer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document