scholarly journals Intragenic proviral elements support transcription of defective HIV-1 proviruses

2021 ◽  
Vol 17 (12) ◽  
pp. e1009982
Author(s):  
Jeffrey Kuniholm ◽  
Elise Armstrong ◽  
Brandy Bernabe ◽  
Carolyn Coote ◽  
Anna Berenson ◽  
...  

HIV-1 establishes a persistent proviral reservoir by integrating into the genome of infected host cells. Current antiretroviral treatments do not target this persistent population of proviruses which include latently infected cells that upon treatment interruption can be reactivated to contribute to HIV-1 rebound. Deep sequencing of persistent HIV proviruses has revealed that greater than 90% of integrated HIV genomes are defective and unable to produce infectious virions. We hypothesized that intragenic elements in the HIV genome support transcription of aberrant HIV-1 RNAs from defective proviruses that lack long terminal repeats (LTRs). Using an intact provirus detection assay, we observed that resting CD4+ T cells and monocyte-derived macrophages (MDMs) are biased towards generating defective HIV-1 proviruses. Multiplex reverse transcription droplet digital PCR identified env and nef transcripts which lacked 5’ untranslated regions (UTR) in acutely infected CD4+ T cells and MDMs indicating transcripts are generated that do not utilize the promoter within the LTR. 5’UTR-deficient env transcripts were also identified in a cohort of people living with HIV (PLWH) on ART, suggesting that these aberrant RNAs are produced in vivo. Using 5’ rapid amplification of cDNA ends (RACE), we mapped the start site of these transcripts within the Env gene. This region bound several cellular transcription factors and functioned as a transcriptional regulatory element that could support transcription and translation of downstream HIV-1 RNAs. These studies provide mechanistic insights into how defective HIV-1 proviruses are persistently expressed to potentially drive inflammation in PLWH.

2021 ◽  
Author(s):  
Jeffrey Kuniholm ◽  
Elise Armstrong ◽  
Brandy Bernabe ◽  
Carolyn Coote ◽  
Anna Berenson ◽  
...  

ABSTRACTHIV-establishes a persistent proviral reservoir by integrating into the genome of infected host cells. Current antiretroviral treatments do not target this persistent population of proviruses which include latently infected cells that upon treatment interruption can be reactivated to contribute to HIV-1 rebound. Deep sequencing of persistent HIV proviruses has revealed that greater than 90% of integrated HIV genomes are defective and unable to produce infectious virions. We hypothesized that intragenic elements in the HIV genome support transcription of aberrant HIV-1 RNAs from defective proviruses that lack long terminal repeats (LTRs). Using an intact provirus detection assay, we observed that resting CD4+ T cells and monocyte-derived macrophages (MDMs) are biased towards generating defective HIV-1 proviruses. Multiplex reverse transcription digital drop PCR identified Env and Nef transcripts which lacked 5’ untranslated regions (UTR) in acutely infected CD4+ T cells and MDMs indicating transcripts are generated that do not utilize the promoter within the LTR. 5’UTR-deficient Env transcripts were also identified in a cohort of people living with HIV (PLWH) on ART, suggesting that these aberrant RNAs are produced in vivo. Using 5’ rapid amplification of cDNA ends (RACE), we mapped the start site of these transcripts within the Env gene. This region bound several cellular transcription factors and functioned as a transcriptional regulatory element that could support transcription and translation of downstream HIV-1 RNAs. These studies provide mechanistic insights into how defective HIV-1 proviruses are persistently expressed to potentially drive inflammation in PLWH.Author SummaryPeople living with HIV establish a persistent reservoir which includes latently infected cells that fuel viral rebound upon treatment interruption. However, the majority of HIV-1 genomes in these persistently infected cells are defective. Whether these defective HIV genomes are expressed and whether they contribute to HIV associated diseases including accelerated aging, neurodegenerative symptoms, and cardiovascular diseases are still outstanding questions. In this paper, we demonstrate that acute infection of macrophages and resting T cells is biased towards generating defective viruses which are expressed by DNA regulatory elements in the HIV genome. These studies describe an alternative mechanism for chronic expression of HIV genomes.


2010 ◽  
Vol 207 (13) ◽  
pp. 2869-2881 ◽  
Author(s):  
Christof Geldmacher ◽  
Njabulo Ngwenyama ◽  
Alexandra Schuetz ◽  
Constantinos Petrovas ◽  
Klaus Reither ◽  
...  

HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common opportunistic pathogens, cytomegalovirus (CMV) and Mycobacterium tuberculosis (MTB). CMV-specific CD4 T cells persisted after HIV infection, whereas MTB-specific CD4 T cells were depleted rapidly. CMV-specific CD4 T cells expressed a mature phenotype and produced very little IL-2, but large amounts of MIP-1β. In contrast, MTB-specific CD4 T cells were less mature, and most produced IL-2 but not MIP-1β. Staphylococcal enterotoxin B–stimulated IL-2–producing cells were more susceptible to HIV infection in vitro than MIP-1β–producing cells. Moreover, IL-2 production was associated with expression of CD25, and neutralization of IL-2 completely abrogated productive HIV infection in vitro. HIV DNA was found to be most abundant in IL-2–producing cells, and least abundant in MIP-1β–producing MTB-specific CD4 T cells from HIV-infected subjects with active tuberculosis. These data support the hypothesis that differences in function affect the susceptibility of pathogen-specific CD4 T cells to HIV infection and depletion in vivo, providing a potential mechanism to explain the rapid loss of MTB-specific CD4 T cells after HIV infection.


2013 ◽  
Vol 9 (12) ◽  
pp. e1003812 ◽  
Author(s):  
Kei Sato ◽  
Naoko Misawa ◽  
Shingo Iwami ◽  
Yorifumi Satou ◽  
Masao Matsuoka ◽  
...  

2005 ◽  
Vol 202 (8) ◽  
pp. 1109-1119 ◽  
Author(s):  
Nagendra R. Hegde ◽  
Claire Dunn ◽  
David M. Lewinsohn ◽  
Michael A. Jarvis ◽  
Jay A. Nelson ◽  
...  

Human cytomegalovirus (HCMV) infects endothelial, epithelial, and glial cells in vivo. These cells can express MHC class II proteins, but are unlikely to play important roles in priming host immunity. Instead, it seems that class II presentation of endogenous HCMV antigens in these cells allows recognition of virus infection. We characterized class II presentation of HCMV glycoprotein B (gB), a membrane protein that accumulates extensively in endosomes during virus assembly. Human CD4+ T cells specific for gB were both highly abundant in blood and cytolytic in vivo. gB-specific CD4+ T cell clones recognized gB that was expressed in glial, endothelial, and epithelial cells, but not exogenous gB that was fed to these cells. Glial cells efficiently presented extremely low levels of endogenous gB—expressed by adenovirus vectors or after HCMV infection—and stimulated CD4+ T cells better than DCs that were incubated with exogenous gB. Presentation of endogenous gB required sorting of gB to endosomal compartments and processing by acidic proteases. Although presentation of cellular proteins that traffic into endosomes is well known, our observations demonstrate for the first time that a viral protein sorted to endosomes is presented exceptionally well, and can promote CD4+ T cell recognition and killing of biologically important host cells.


AIDS ◽  
2008 ◽  
Vol 22 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Gareth J Hughes ◽  
Alexandra Cochrane ◽  
Clifford Leen ◽  
Sheila Morris ◽  
Jeanne E Bell ◽  
...  
Keyword(s):  
T Cells ◽  

PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e86479 ◽  
Author(s):  
Yasuhiro Suzuki ◽  
Hiroyuki Gatanaga ◽  
Natsuo Tachikawa ◽  
Shinichi Oka

Virology ◽  
1999 ◽  
Vol 263 (1) ◽  
pp. 78-88 ◽  
Author(s):  
Caterina Lapenta ◽  
Stefano M. Santini ◽  
Enrico Proietti ◽  
Paola Rizza ◽  
Mariantonia Logozzi ◽  
...  

2000 ◽  
Vol 97 (3) ◽  
pp. 1269-1274 ◽  
Author(s):  
H. Blaak ◽  
A. B. van't Wout ◽  
M. Brouwer ◽  
B. Hooibrink ◽  
E. Hovenkamp ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  

2008 ◽  
Vol 40 (2) ◽  
pp. 257
Author(s):  
Stephen E. Braun ◽  
Fay Eng Wong ◽  
Michelle Connole ◽  
Ran Taube ◽  
Akikazu Murakami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document