scholarly journals Measurement of Nε-(Carboxymethyl)lysine and Nε-(Carboxyethyl)lysine in Human Plasma Protein by Stable-Isotope-Dilution Tandem Mass Spectrometry

2004 ◽  
Vol 50 (7) ◽  
pp. 1222-1228 ◽  
Author(s):  
Tom Teerlink ◽  
Rob Barto ◽  
Herman J ten Brink ◽  
Casper G Schalkwijk

Abstract Background: N ε-(Carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) are two stable, nonenzymatic chemical modifications of protein lysine residues resulting from glycation and oxidation reactions. We developed a tandem mass spectrometric method for their simultaneous measurement in hydrolysates of plasma proteins. Methods: CML and CEL were liberated from plasma proteins by acid hydrolysis after addition of deuterated CML and CEL as internal standards. Chromatographic separation was performed by gradient-elution reversed-phase chromatography with a mobile phase containing 5 mmol/L nonafluoropentanoic acid as ion-pairing agent. Mass transitions of 205.1→84.1 and 219.1→84.1 for CML and CEL, respectively, and 209.1→88.1 and 223.1→88.1 for their respective internal standards were monitored in positive-ion mode. Results: CML and CEL were separated with baseline resolution with a total analysis time of 21 min. The lower limit of quantification was 0.02 μmol/L for both compounds. Mean recoveries from plasma samples to which CML and CEL had been added were 92% for CML and 98% for CEL. Within-day CVs were <7.2% for CML and <8.2% for CEL, and between-day CVs were <8.5% for CML and <9.0% for CEL. In healthy individuals (n = 10), mean (SD) plasma concentrations of CML and CEL were 2.80 (0.40) μmol/L (range, 2.1–3.4 μmol/L) and 0.82 (0.21) μmol/L (range, 0.5–1.2 μmol/L), respectively. In hemodialysis (n = 17) and peritoneal dialysis (n = 9) patients, plasma concentrations of CML and CEL were increased two- to threefold compared with controls, without significant differences between dialysis modes [7.26 (1.36) vs 8.01 (3.80) μmol/L (P = 0.89) for CML, and 1.84 (0.39) vs 1.71 (0.42) μmol/L (P = 0.53) for CEL]. Conclusions: This stable-isotope-dilution tandem mass spectrometry method is suitable for simultaneous analysis of CML and CEL in hydrolysates of plasma proteins. Its robustness makes it suitable for assessing the value of these compounds as biomarkers of oxidative stress resulting from sugar and lipid oxidation.

2005 ◽  
Vol 51 (8) ◽  
pp. 1487-1492 ◽  
Author(s):  
Henkjan Gellekink ◽  
Dinny van Oppenraaij-Emmerzaal ◽  
Arno van Rooij ◽  
Eduard A Struys ◽  
Martin den Heijer ◽  
...  

Abstract Background: It has been postulated that changes in S-adenosylhomocysteine (AdoHcy), a potent inhibitor of transmethylation, provide a mechanism by which increased homocysteine causes its detrimental effects. We aimed to develop a rapid and sensitive method to measure AdoHcy and its precursor S-adenosylmethionine (AdoMet). Methods: We used stable-isotope dilution liquid chromatography–electrospray injection tandem mass spectrometry (LC-ESI-MS/MS) to measure AdoMet and AdoHcy in plasma. Acetic acid was added to prevent AdoMet degradation. Solid-phase extraction (SPE) columns containing phenylboronic acid were used to bind AdoMet, AdoHcy, and their internal standards and for sample cleanup. An HPLC C18 column directly coupled to the LC-MS/MS was used for separation and detection. Results: In plasma samples, the interassay CVs for AdoMet and AdoHcy were 3.9% and 8.3%, and the intraassay CVs were 4.2% and 6.7%, respectively. Mean recoveries were 94.5% for AdoMet and 96.8% for AdoHcy. The quantification limits were 2.0 and 1.0 nmol/L for AdoMet and AdoHcy, respectively. Immediate acidification of the plasma samples with acetic acid prevented the observed AdoMet degradation. In a group of controls (mean plasma total Hcy, 11.2 μmol/L), plasma AdoMet and AdoHcy were 94.5 and 12.3 nmol/L, respectively. Conclusions: Stable-isotope dilution LC-ESI-MS/MS allows sensitive and rapid measurement of AdoMet and AdoHcy. The SPE columns enable simple cleanup, and no metabolite derivatization is needed. The instability of AdoMet is a serious problem and can be prevented easily by immediate acidification of samples.


Sign in / Sign up

Export Citation Format

Share Document