scholarly journals Microfluidic Immunoaffinity Basophil Activation Test for Point-of-Care Allergy Diagnosis

2019 ◽  
Vol 4 (2) ◽  
pp. 152-163 ◽  
Author(s):  
Zenib Aljadi ◽  
Frida Kalm ◽  
Harisha Ramachandraiah ◽  
Anna Nopp ◽  
Joachim Lundahl ◽  
...  

Abstract Background The flow cytometry-based basophil activation test (BAT) is used for the diagnosis of allergic response. However, flow cytometry is time-consuming, requiring skilled personnel and cumbersome processing, which has limited its use in the clinic. Here, we introduce a novel microfluidic-based immunoaffinity BAT (miBAT) method. Methods The microfluidic device, coated with anti-CD203c, was designed to capture basophils directly from whole blood. The captured basophils are activated by anti-FcεRI antibody followed by optical detection of CD63 expression (degranulation marker). The device was first characterized using a basophil cell line followed by whole blood experiments. We evaluated the device with ex vivo stimulation of basophils in whole blood from healthy controls and patients with allergies and compared it with flow cytometry. Results The microfluidic device was capable of capturing basophils directly from whole blood followed by in vitro activation and quantification of CD63 expression. CD63 expression was significantly higher (P = 0.0002) in on-chip activated basophils compared with nonactivated cells. The difference in CD63 expression on anti-FcεRI-activated captured basophils in microfluidic chip was significantly higher (P = 0.03) in patients with allergies compared with healthy controls, and the results were comparable with flow cytometry analysis (P = 0.04). Furthermore, there was no significant difference of CD63% expression in anti-FcεRI-activated captured basophils in microfluidic chip compared with flow cytometry. Conclusions We report on the miBAT. This device is capable of isolating basophils directly from whole blood for on-chip activation and detection. The new miBAT method awaits validation in larger patient populations to assess performance in diagnosis and monitoring of patients with allergies at the point of care.

2005 ◽  
Vol 71 (2) ◽  
pp. 1117-1121 ◽  
Author(s):  
Chieko Sakamoto ◽  
Nobuyasu Yamaguchi ◽  
Masao Nasu

ABSTRACT This study investigated a microfluidic chip-based system (on-chip flow cytometry) for quantification of bacteria both in culture and in environmental samples. Bacterial numbers determined by this technique were similar to those obtained by direct microscopic count. The time required for this on-chip flow cytometry was only 30 min per 6 samples.


2015 ◽  
Vol 22 (9) ◽  
pp. 1025-1032 ◽  
Author(s):  
Per Venge ◽  
Lena Douhan-Håkansson ◽  
Daniel Garwicz ◽  
Christer Peterson ◽  
Shengyuan Xu ◽  
...  

ABSTRACTThe distinction between causes of acute infections is a major clinical challenge. Current biomarkers, however, are not sufficiently accurate. Human neutrophil lipocalin (HNL) concentrations in serum or whole blood activated by formyl-methionine-leucine-phenylalanine (fMLP) were shown to distinguish acute infections of bacterial or viral cause with high accuracy. The aim was therefore to compare the clinical performance of HNL with currently used biomarkers. Seven hundred twenty-five subjects (144 healthy controls and 581 patients with signs and symptoms of acute infections) were included in the study. C-reactive protein (CRP), the expression of CD64 on neutrophils, procalcitonin (PCT), and blood neutrophil counts were measured by established techniques, and HNL concentrations were measured in whole-blood samples after activation with fMLP. All tested biomarkers were elevated in bacterial as opposed to viral infections (P< 0.001). CRP, PCT, and CD64 expression in neutrophils was elevated in viral infections compared to healthy controls (P< 0.001). In the distinction between healthy controls and patients with bacterial infections, the areas under the receiver operating characteristic (ROC) curves were >0.85 for all biomarkers, whereas for the distinction between bacterial and viral infections, only HNL concentration in fMLP-activated whole blood showed an area under the ROC curve (AUROC) of >0.90 and superior clinical performance. The clinical performance of HNL in fMLP-activated whole blood was superior to current biomarkers and similar to previous results of HNL in serum. The procedure can be adopted for point-of-care testing with response times of <15 min.


2010 ◽  
Vol 74 (2) ◽  
pp. e27-e29 ◽  
Author(s):  
Pascale Dewachter ◽  
Samuel Castro ◽  
Frédéric Zeitoun ◽  
Sylvie Chollet-Martin ◽  
Laurence Gaillanne ◽  
...  

Lab on a Chip ◽  
2015 ◽  
Vol 15 (6) ◽  
pp. 1533-1544 ◽  
Author(s):  
John Nguyen ◽  
Yuan Wei ◽  
Yi Zheng ◽  
Chen Wang ◽  
Yu Sun

We present a monolithic microfluidic device capable of on-chip sample preparation for both RBC and WBC measurements from whole blood.


2008 ◽  
Vol 74B (4) ◽  
pp. 201-210 ◽  
Author(s):  
D. G. Ebo ◽  
C. H. Bridts ◽  
M. M. Hagendorens ◽  
N. E. Aerts ◽  
L. S. De Clerck ◽  
...  

2021 ◽  
Author(s):  
Wan Zhou ◽  
Guanglei Fu [email protected] ◽  
Xiujun Li

<p>The volumetric bar-chart microfluidic chips (V-Chips) driven by chemical reaction-generated gas provide a promising platform for point-of-care (POC) visual biomarker quantitation. However, multiple limitations are encountered in conventional V-Chips, such as costly and complex chip fabrication, complicated assembly, and imprecise controllability of gas production. Herein, we introduced nanomaterial-mediated photothermal effects to V-Chips, and for the first time developed a new type of V-Chip, <u>p</u>hoto<u>t</u>hermal bar-chart microfluidic <u>c</u>hip (PT-Chip), for visual quantitative detection of biochemicals without any bulky and costly analytical instruments. Immunosensing signals were converted to visual readout signals via photothermal effects, the on-chip bar-chart movements, enabling quantitative biomarker detection on a low-cost polymer hybrid PT-Chip with on-chip scale rulers. Four different human serum samples containing prostate-specific antigen (PSA) as a model analyte were detected simultaneously using the PT-Chip, with the limit of detection of 2.1 ng/mL, meeting clinical diagnostic requirements. Although no conventional signal detectors were used, it achieved comparable detection sensitivity to absorbance measurements with a microplate reader. The PT-Chip was further validated by testing human whole blood without the color interference problem, demonstrating good analytical performance of our method even in complex matrixes and thus the potential to fill a gap in current clinical diagnostics that is incapable of testing whole blood. This new PT-Chip driven by nanomaterial-mediated photothermal effects opens a new horizon of microfluidic platforms for instrument-free diagnostics at the point of care.</p>


2021 ◽  
Author(s):  
Wan Zhou ◽  
Guanglei Fu [email protected] ◽  
Xiujun Li

<p>The volumetric bar-chart microfluidic chips (V-Chips) driven by chemical reaction-generated gas provide a promising platform for point-of-care (POC) visual biomarker quantitation. However, multiple limitations are encountered in conventional V-Chips, such as costly and complex chip fabrication, complicated assembly, and imprecise controllability of gas production. Herein, we introduced nanomaterial-mediated photothermal effects to V-Chips, and for the first time developed a new type of V-Chip, <u>p</u>hoto<u>t</u>hermal bar-chart microfluidic <u>c</u>hip (PT-Chip), for visual quantitative detection of biochemicals without any bulky and costly analytical instruments. Immunosensing signals were converted to visual readout signals via photothermal effects, the on-chip bar-chart movements, enabling quantitative biomarker detection on a low-cost polymer hybrid PT-Chip with on-chip scale rulers. Four different human serum samples containing prostate-specific antigen (PSA) as a model analyte were detected simultaneously using the PT-Chip, with the limit of detection of 2.1 ng/mL, meeting clinical diagnostic requirements. Although no conventional signal detectors were used, it achieved comparable detection sensitivity to absorbance measurements with a microplate reader. The PT-Chip was further validated by testing human whole blood without the color interference problem, demonstrating good analytical performance of our method even in complex matrixes and thus the potential to fill a gap in current clinical diagnostics that is incapable of testing whole blood. This new PT-Chip driven by nanomaterial-mediated photothermal effects opens a new horizon of microfluidic platforms for instrument-free diagnostics at the point of care.</p>


Sign in / Sign up

Export Citation Format

Share Document