scholarly journals Student Prize-Winning Abstracts 2010

2011 ◽  
Vol 12 (1) ◽  
pp. 77-77
Author(s):  
Sharpley Hsieh ◽  
Olivier Piguet ◽  
John R. Hodges

AbstractIntroduction: Frontotemporal dementia (FTD) is a progressive neurode-generative brain disease characterised clinically by abnormalities in behaviour, cognition and language. Two subgroups, behavioural-variant FTD (bvFTD) and semantic dementia (SD), also show impaired emotion recognition particularly for negative emotions. This deficit has been demonstrated using visual stimuli such as facial expressions. Whether recognition of emotions conveyed through other modalities — for example, music — is also impaired has not been investigated. Methods: Patients with bvFTD, SD and Alzheimer's disease (AD), as well as healthy age-matched controls, labeled tunes according to the emotion conveyed (happy, sad, peaceful or scary). In addition, each tune was also rated along two orthogonal emotional dimensions: valence (pleasant/unpleasant) and arousal (stimulating/relaxing). Participants also undertook a facial emotion recognition test and other cognitive tests. Integrity of basic music detection (tone, tempo) was also examined. Results: Patient groups were matched for disease severity. Overall, patients did not differ from controls with regard to basic music processing or for the recognition of facial expressions. Ratings of valence and arousal were similar across groups. In contrast, SD patients were selectively impaired at recognising music conveying negative emotions (sad and scary). Patients with bvFTD did not differ from controls. Conclusion: Recognition of emotions in music appears to be selectively affected in some FTD subgroups more than others, a disturbance of emotion detection which appears to be modality specific. This finding suggests dissociation in the neural networks necessary for the processing of emotions depending on modality.

2021 ◽  
pp. 003329412110184
Author(s):  
Paola Surcinelli ◽  
Federica Andrei ◽  
Ornella Montebarocci ◽  
Silvana Grandi

Aim of the research The literature on emotion recognition from facial expressions shows significant differences in recognition ability depending on the proposed stimulus. Indeed, affective information is not distributed uniformly in the face and recent studies showed the importance of the mouth and the eye regions for a correct recognition. However, previous studies used mainly facial expressions presented frontally and studies which used facial expressions in profile view used a between-subjects design or children faces as stimuli. The present research aims to investigate differences in emotion recognition between faces presented in frontal and in profile views by using a within subjects experimental design. Method The sample comprised 132 Italian university students (88 female, Mage = 24.27 years, SD = 5.89). Face stimuli displayed both frontally and in profile were selected from the KDEF set. Two emotion-specific recognition accuracy scores, viz., frontal and in profile, were computed from the average of correct responses for each emotional expression. In addition, viewing times and response times (RT) were registered. Results Frontally presented facial expressions of fear, anger, and sadness were significantly better recognized than facial expressions of the same emotions in profile while no differences were found in the recognition of the other emotions. Longer viewing times were also found when faces expressing fear and anger were presented in profile. In the present study, an impairment in recognition accuracy was observed only for those emotions which rely mostly on the eye regions.


2020 ◽  
Author(s):  
Nazire Duran ◽  
ANTHONY P. ATKINSON

Certain facial features provide useful information for recognition of facial expressions. In two experiments, we investigated whether foveating informative features of briefly presented expressions improves recognition accuracy and whether these features are targeted reflexively when not foveated. Angry, fearful, surprised, and sad or disgusted expressions were presented briefly at locations which would ensure foveation of specific features. Foveating the mouth of fearful, surprised and disgusted expressions improved emotion recognition compared to foveating an eye or cheek or the central brow. Foveating the brow lead to equivocal results in anger recognition across the two experiments, which might be due to the different combination of emotions used. There was no consistent evidence suggesting that reflexive first saccades targeted emotion-relevant features; instead, they targeted the closest feature to initial fixation. In a third experiment, angry, fearful, surprised and disgusted expressions were presented for 5 seconds. Duration of task-related fixations in the eyes, brow, nose and mouth regions was modulated by the presented expression. Moreover, longer fixation at the mouth positively correlated with anger and disgust accuracy both when these expressions were freely viewed (Experiment 3) and when briefly presented at the mouth (Experiment 2). Finally, an overall preference to fixate the mouth across all expressions correlated positively with anger and disgust accuracy. These findings suggest that foveal processing of informative features is functional/contributory to emotion recognition, but they are not automatically sought out when not foveated, and that facial emotion recognition performance is related to idiosyncratic gaze behaviour.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260814
Author(s):  
Nazire Duran ◽  
Anthony P. Atkinson

Certain facial features provide useful information for recognition of facial expressions. In two experiments, we investigated whether foveating informative features of briefly presented expressions improves recognition accuracy and whether these features are targeted reflexively when not foveated. Angry, fearful, surprised, and sad or disgusted expressions were presented briefly at locations which would ensure foveation of specific features. Foveating the mouth of fearful, surprised and disgusted expressions improved emotion recognition compared to foveating an eye or cheek or the central brow. Foveating the brow led to equivocal results in anger recognition across the two experiments, which might be due to the different combination of emotions used. There was no consistent evidence suggesting that reflexive first saccades targeted emotion-relevant features; instead, they targeted the closest feature to initial fixation. In a third experiment, angry, fearful, surprised and disgusted expressions were presented for 5 seconds. Duration of task-related fixations in the eyes, brow, nose and mouth regions was modulated by the presented expression. Moreover, longer fixation at the mouth positively correlated with anger and disgust accuracy both when these expressions were freely viewed (Experiment 2b) and when briefly presented at the mouth (Experiment 2a). Finally, an overall preference to fixate the mouth across all expressions correlated positively with anger and disgust accuracy. These findings suggest that foveal processing of informative features is functional/contributory to emotion recognition, but they are not automatically sought out when not foveated, and that facial emotion recognition performance is related to idiosyncratic gaze behaviour.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hanna Drimalla ◽  
Irina Baskow ◽  
Behnoush Behnia ◽  
Stefan Roepke ◽  
Isabel Dziobek

Abstract Background Imitation of facial expressions plays an important role in social functioning. However, little is known about the quality of facial imitation in individuals with autism and its relationship with defining difficulties in emotion recognition. Methods We investigated imitation and recognition of facial expressions in 37 individuals with autism spectrum conditions and 43 neurotypical controls. Using a novel computer-based face analysis, we measured instructed imitation of facial emotional expressions and related it to emotion recognition abilities. Results Individuals with autism imitated facial expressions if instructed to do so, but their imitation was both slower and less precise than that of neurotypical individuals. In both groups, a more precise imitation scaled positively with participants’ accuracy of emotion recognition. Limitations Given the study’s focus on adults with autism without intellectual impairment, it is unclear whether the results generalize to children with autism or individuals with intellectual disability. Further, the new automated facial analysis, despite being less intrusive than electromyography, might be less sensitive. Conclusions Group differences in emotion recognition, imitation and their interrelationships highlight potential for treatment of social interaction problems in individuals with autism.


2021 ◽  
Author(s):  
Evrim Gulbetekin

Abstract This investigation used three experiments to test the effect of mask use and other-race effect (ORE) on face perception in three contexts: (a) face recognition, (b) recognition of facial expressions, and (c) social distance. The first, which involved a matching-to-sample paradigm, tested Caucasian subjects with either masked or unmasked faces using Caucasian and Asian samples. The participants exhibited the best performance in recognizing an unmasked face condition and the poorest when asked to recognize a masked face that they had seen earlier without a mask. Accuracy was also poorer for Asian faces than Caucasian faces. The second experiment presented Asian or Caucasian faces having different emotional expressions, with and without masks. The results for this task, which involved identifying which emotional expression the participants had seen on the presented face, indicated that emotion recognition performance decreased for faces portrayed with masks. The emotional expressions ranged from the most accurately to least accurately recognized as follows: happy, neutral, disgusted, and fearful. Emotion recognition performance was poorer for Asian stimuli compared to Caucasian. Experiment 3 used the same participants and stimuli and asked participants to indicate the social distance they would prefer to observe with each pictured person. The participants preferred a wider social distance with unmasked faces compared to masked faces. Social distance also varied by the portrayed emotion: ranging from farther to closer as follows: disgusted, fearful, neutral, and happy. Race was also a factor; participants preferred wider social distance for Asian compared to Caucasian faces. Altogether, our findings indicated that during the COVID-19 pandemic face perception and social distance were affected by mask use, ORE.


2021 ◽  
Author(s):  
Kai Klepzig ◽  
Julia Wendt ◽  
Bettina Sarnowski ◽  
Alfons O. Hamm ◽  
Martin Lotze

Abstract Single case studies about patients with unilateral insular lesions reported deficits in emotion recognition from facial expressions. However, there is no consensus about both the actual extent of impairments and the role of lesion lateralization. To investigate associations of brain lesions and impairments in a facial emotion recognition task, we used voxel-based lesion-symptom mapping (VLSM) in a group of 29 stroke patients in the chronic stage, 16 with left and 13 with right hemispheric lesion. Recognition accuracy was impaired for fearful and angry expressions in patients with left hemispheric lesions compared to 14 matched healthy controls. VLSM analyses revealed that lesions centered around the left insula were associated with impaired recognition of emotional facial expressions. We here demonstrate a critical role for the left insula in decoding unpleasant emotions from facial expressions and therefore present further evidence for a broader role for the insular cortex not restricted to disgust processing.


2014 ◽  
Vol 20 (10) ◽  
pp. 1004-1014 ◽  
Author(s):  
Cinzia Cecchetto ◽  
Marilena Aiello ◽  
Delia D’Amico ◽  
Daniela Cutuli ◽  
Daniela Cargnelutti ◽  
...  

AbstractMultiple sclerosis (MS) may be associated with impaired perception of facial emotions. However, emotion recognition mediated by bodily postures has never been examined in these patients. Moreover, several studies have suggested a relation between emotion recognition impairments and alexithymia. This is in line with the idea that the ability to recognize emotions requires the individuals to be able to understand their own emotions. Despite a deficit in emotion recognition has been observed in MS patients, the association between impaired emotion recognition and alexithymia has received little attention. The aim of this study was, first, to investigate MS patient’s abilities to recognize emotions mediated by both facial and bodily expressions and, second, to examine whether any observed deficits in emotions recognition could be explained by the presence of alexithymia. Thirty patients with MS and 30 healthy matched controls performed experimental tasks assessing emotion discrimination and recognition of facial expressions and bodily postures. Moreover, they completed questionnaires evaluating alexithymia, depression, and fatigue. First, facial emotion recognition and, to a lesser extent, bodily emotion recognition can be impaired in MS patients. In particular, patients with higher disability showed an impairment in emotion recognition compared with patients with lower disability and controls. Second, their deficit in emotion recognition was not predicted by alexithymia. Instead, the disease’s characteristics and the performance on some cognitive tasks significantly correlated with emotion recognition. Impaired facial emotion recognition is a cognitive signature of MS that is not dependent on alexithymia. (JINS, 2014, 19, 1–11)


2019 ◽  
Vol 25 (05) ◽  
pp. 453-461 ◽  
Author(s):  
Katherine Osborne-Crowley ◽  
Sophie C. Andrews ◽  
Izelle Labuschagne ◽  
Akshay Nair ◽  
Rachael Scahill ◽  
...  

AbstractObjectives: Previous research has demonstrated an association between emotion recognition and apathy in several neurological conditions involving fronto-striatal pathology, including Parkinson’s disease and brain injury. In line with these findings, we aimed to determine whether apathetic participants with early Huntington’s disease (HD) were more impaired on an emotion recognition task compared to non-apathetic participants and healthy controls. Methods: We included 43 participants from the TRACK-HD study who reported apathy on the Problem Behaviours Assessment – short version (PBA-S), 67 participants who reported no apathy, and 107 controls matched for age, sex, and level of education. During their baseline TRACK-HD visit, participants completed a battery of cognitive and psychological tests including an emotion recognition task, the Hospital Depression and Anxiety Scale (HADS) and were assessed on the PBA-S. Results: Compared to the non-apathetic group and the control group, the apathetic group were impaired on the recognition of happy facial expressions, after controlling for depression symptomology on the HADS and general disease progression (Unified Huntington’s Disease Rating Scale total motor score). This was despite no difference between the apathetic and non-apathetic group on overall cognitive functioning assessed by a cognitive composite score. Conclusions: Impairment of the recognition of happy expressions may be part of the clinical picture of apathy in HD. While shared reliance on frontostriatal pathways may broadly explain associations between emotion recognition and apathy found across several patient groups, further work is needed to determine what relationships exist between recognition of specific emotions, distinct subtypes of apathy and underlying neuropathology. (JINS, 2019, 25, 453–461)


Sign in / Sign up

Export Citation Format

Share Document