Facial and Bodily Emotion Recognition in Multiple Sclerosis: The Role of Alexithymia and Other Characteristics of the Disease

2014 ◽  
Vol 20 (10) ◽  
pp. 1004-1014 ◽  
Author(s):  
Cinzia Cecchetto ◽  
Marilena Aiello ◽  
Delia D’Amico ◽  
Daniela Cutuli ◽  
Daniela Cargnelutti ◽  
...  

AbstractMultiple sclerosis (MS) may be associated with impaired perception of facial emotions. However, emotion recognition mediated by bodily postures has never been examined in these patients. Moreover, several studies have suggested a relation between emotion recognition impairments and alexithymia. This is in line with the idea that the ability to recognize emotions requires the individuals to be able to understand their own emotions. Despite a deficit in emotion recognition has been observed in MS patients, the association between impaired emotion recognition and alexithymia has received little attention. The aim of this study was, first, to investigate MS patient’s abilities to recognize emotions mediated by both facial and bodily expressions and, second, to examine whether any observed deficits in emotions recognition could be explained by the presence of alexithymia. Thirty patients with MS and 30 healthy matched controls performed experimental tasks assessing emotion discrimination and recognition of facial expressions and bodily postures. Moreover, they completed questionnaires evaluating alexithymia, depression, and fatigue. First, facial emotion recognition and, to a lesser extent, bodily emotion recognition can be impaired in MS patients. In particular, patients with higher disability showed an impairment in emotion recognition compared with patients with lower disability and controls. Second, their deficit in emotion recognition was not predicted by alexithymia. Instead, the disease’s characteristics and the performance on some cognitive tasks significantly correlated with emotion recognition. Impaired facial emotion recognition is a cognitive signature of MS that is not dependent on alexithymia. (JINS, 2014, 19, 1–11)

2014 ◽  
Vol 26 (4) ◽  
pp. 253-259 ◽  
Author(s):  
Linette Lawlor-Savage ◽  
Scott R. Sponheim ◽  
Vina M. Goghari

BackgroundThe ability to accurately judge facial expressions is important in social interactions. Individuals with bipolar disorder have been found to be impaired in emotion recognition; however, the specifics of the impairment are unclear. This study investigated whether facial emotion recognition difficulties in bipolar disorder reflect general cognitive, or emotion-specific, impairments. Impairment in the recognition of particular emotions and the role of processing speed in facial emotion recognition were also investigated.MethodsClinically stable bipolar patients (n = 17) and healthy controls (n = 50) judged five facial expressions in two presentation types, time-limited and self-paced. An age recognition condition was used as an experimental control.ResultsBipolar patients’ overall facial recognition ability was unimpaired. However, patients’ specific ability to judge happy expressions under time constraints was impaired.ConclusionsFindings suggest a deficit in happy emotion recognition impacted by processing speed. Given the limited sample size, further investigation with a larger patient sample is warranted.


2020 ◽  
Author(s):  
Nazire Duran ◽  
ANTHONY P. ATKINSON

Certain facial features provide useful information for recognition of facial expressions. In two experiments, we investigated whether foveating informative features of briefly presented expressions improves recognition accuracy and whether these features are targeted reflexively when not foveated. Angry, fearful, surprised, and sad or disgusted expressions were presented briefly at locations which would ensure foveation of specific features. Foveating the mouth of fearful, surprised and disgusted expressions improved emotion recognition compared to foveating an eye or cheek or the central brow. Foveating the brow lead to equivocal results in anger recognition across the two experiments, which might be due to the different combination of emotions used. There was no consistent evidence suggesting that reflexive first saccades targeted emotion-relevant features; instead, they targeted the closest feature to initial fixation. In a third experiment, angry, fearful, surprised and disgusted expressions were presented for 5 seconds. Duration of task-related fixations in the eyes, brow, nose and mouth regions was modulated by the presented expression. Moreover, longer fixation at the mouth positively correlated with anger and disgust accuracy both when these expressions were freely viewed (Experiment 3) and when briefly presented at the mouth (Experiment 2). Finally, an overall preference to fixate the mouth across all expressions correlated positively with anger and disgust accuracy. These findings suggest that foveal processing of informative features is functional/contributory to emotion recognition, but they are not automatically sought out when not foveated, and that facial emotion recognition performance is related to idiosyncratic gaze behaviour.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260814
Author(s):  
Nazire Duran ◽  
Anthony P. Atkinson

Certain facial features provide useful information for recognition of facial expressions. In two experiments, we investigated whether foveating informative features of briefly presented expressions improves recognition accuracy and whether these features are targeted reflexively when not foveated. Angry, fearful, surprised, and sad or disgusted expressions were presented briefly at locations which would ensure foveation of specific features. Foveating the mouth of fearful, surprised and disgusted expressions improved emotion recognition compared to foveating an eye or cheek or the central brow. Foveating the brow led to equivocal results in anger recognition across the two experiments, which might be due to the different combination of emotions used. There was no consistent evidence suggesting that reflexive first saccades targeted emotion-relevant features; instead, they targeted the closest feature to initial fixation. In a third experiment, angry, fearful, surprised and disgusted expressions were presented for 5 seconds. Duration of task-related fixations in the eyes, brow, nose and mouth regions was modulated by the presented expression. Moreover, longer fixation at the mouth positively correlated with anger and disgust accuracy both when these expressions were freely viewed (Experiment 2b) and when briefly presented at the mouth (Experiment 2a). Finally, an overall preference to fixate the mouth across all expressions correlated positively with anger and disgust accuracy. These findings suggest that foveal processing of informative features is functional/contributory to emotion recognition, but they are not automatically sought out when not foveated, and that facial emotion recognition performance is related to idiosyncratic gaze behaviour.


2021 ◽  
pp. 1-10
Author(s):  
Daniel T. Burley ◽  
Christopher W. Hobson ◽  
Dolapo Adegboye ◽  
Katherine H. Shelton ◽  
Stephanie H.M. van Goozen

Abstract Impaired facial emotion recognition is a transdiagnostic risk factor for a range of psychiatric disorders. Childhood behavioral difficulties and parental emotional environment have been independently associated with impaired emotion recognition; however, no study has examined the contribution of these factors in conjunction. We measured recognition of negative (sad, fear, anger), neutral, and happy facial expressions in 135 children aged 5–7 years referred by their teachers for behavioral problems. Parental emotional environment was assessed for parental expressed emotion (EE) – characterized by negative comments, reduced positive comments, low warmth, and negativity towards their child – using the 5-minute speech sample. Child behavioral problems were measured using the teacher-informant Strengths and Difficulties Questionnaire (SDQ). Child behavioral problems and parental EE were independently associated with impaired recognition of negative facial expressions specifically. An interactive effect revealed that the combination of both factors was associated with the greatest risk for impaired recognition of negative faces, and in particular sad facial expressions. No relationships emerged for the identification of happy facial expressions. This study furthers our understanding of multidimensional processes associated with the development of facial emotion recognition and supports the importance of early interventions that target this domain.


2017 ◽  
Vol 29 (5) ◽  
pp. 1749-1761 ◽  
Author(s):  
Johanna Bick ◽  
Rhiannon Luyster ◽  
Nathan A. Fox ◽  
Charles H. Zeanah ◽  
Charles A. Nelson

AbstractWe examined facial emotion recognition in 12-year-olds in a longitudinally followed sample of children with and without exposure to early life psychosocial deprivation (institutional care). Half of the institutionally reared children were randomized into foster care homes during the first years of life. Facial emotion recognition was examined in a behavioral task using morphed images. This same task had been administered when children were 8 years old. Neutral facial expressions were morphed with happy, sad, angry, and fearful emotional facial expressions, and children were asked to identify the emotion of each face, which varied in intensity. Consistent with our previous report, we show that some areas of emotion processing, involving the recognition of happy and fearful faces, are affected by early deprivation, whereas other areas, involving the recognition of sad and angry faces, appear to be unaffected. We also show that early intervention can have a lasting positive impact, normalizing developmental trajectories of processing negative emotions (fear) into the late childhood/preadolescent period.


2021 ◽  
Vol 11 (22) ◽  
pp. 10540
Author(s):  
Navjot Rathour ◽  
Zeba Khanam ◽  
Anita Gehlot ◽  
Rajesh Singh ◽  
Mamoon Rashid ◽  
...  

There is a significant interest in facial emotion recognition in the fields of human–computer interaction and social sciences. With the advancements in artificial intelligence (AI), the field of human behavioral prediction and analysis, especially human emotion, has evolved significantly. The most standard methods of emotion recognition are currently being used in models deployed in remote servers. We believe the reduction in the distance between the input device and the server model can lead us to better efficiency and effectiveness in real life applications. For the same purpose, computational methodologies such as edge computing can be beneficial. It can also encourage time-critical applications that can be implemented in sensitive fields. In this study, we propose a Raspberry-Pi based standalone edge device that can detect real-time facial emotions. Although this edge device can be used in variety of applications where human facial emotions play an important role, this article is mainly crafted using a dataset of employees working in organizations. A Raspberry-Pi-based standalone edge device has been implemented using the Mini-Xception Deep Network because of its computational efficiency in a shorter time compared to other networks. This device has achieved 100% accuracy for detecting faces in real time with 68% accuracy, i.e., higher than the accuracy mentioned in the state-of-the-art with the FER 2013 dataset. Future work will implement a deep network on Raspberry-Pi with an Intel Movidious neural compute stick to reduce the processing time and achieve quick real time implementation of the facial emotion recognition system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paula J. Webster ◽  
Shuo Wang ◽  
Xin Li

Different styles of social interaction are one of the core characteristics of autism spectrum disorder (ASD). Social differences among individuals with ASD often include difficulty in discerning the emotions of neurotypical people based on their facial expressions. This review first covers the rich body of literature studying differences in facial emotion recognition (FER) in those with ASD, including behavioral studies and neurological findings. In particular, we highlight subtle emotion recognition and various factors related to inconsistent findings in behavioral studies of FER in ASD. Then, we discuss the dual problem of FER – namely facial emotion expression (FEE) or the production of facial expressions of emotion. Despite being less studied, social interaction involves both the ability to recognize emotions and to produce appropriate facial expressions. How others perceive facial expressions of emotion in those with ASD has remained an under-researched area. Finally, we propose a method for teaching FER [FER teaching hierarchy (FERTH)] based on recent research investigating FER in ASD, considering the use of posed vs. genuine emotions and static vs. dynamic stimuli. We also propose two possible teaching approaches: (1) a standard method of teaching progressively from simple drawings and cartoon characters to more complex audio-visual video clips of genuine human expressions of emotion with context clues or (2) teaching in a field of images that includes posed and genuine emotions to improve generalizability before progressing to more complex audio-visual stimuli. Lastly, we advocate for autism interventionists to use FER stimuli developed primarily for research purposes to facilitate the incorporation of well-controlled stimuli to teach FER and bridge the gap between intervention and research in this area.


2019 ◽  
Vol 25 (08) ◽  
pp. 884-889 ◽  
Author(s):  
Sally A. Grace ◽  
Wei Lin Toh ◽  
Ben Buchanan ◽  
David J. Castle ◽  
Susan L. Rossell

Abstract Objectives: Patients with body dysmorphic disorder (BDD) have difficulty in recognising facial emotions, and there is evidence to suggest that there is a specific deficit in identifying negative facial emotions, such as sadness and anger. Methods: This study investigated facial emotion recognition in 19 individuals with BDD compared with 21 healthy control participants who completed a facial emotion recognition task, in which they were asked to identify emotional expressions portrayed in neutral, happy, sad, fearful, or angry faces. Results: Compared to the healthy control participants, the BDD patients were generally less accurate in identifying all facial emotions but showed specific deficits for negative emotions. The BDD group made significantly more errors when identifying neutral, angry, and sad faces than healthy controls; and were significantly slower at identifying neutral, angry, and happy faces. Conclusions: These findings add to previous face-processing literature in BDD, suggesting deficits in identifying negative facial emotions. There are treatment implications as future interventions would do well to target such deficits.


Sign in / Sign up

Export Citation Format

Share Document