UVB-Regulated Gene Expression in Human Keratinocytes: Analysis by Differential Display

2003 ◽  
pp. 347-366 ◽  
Author(s):  
Harry Frank Abts ◽  
Thomas Welss ◽  
Kai Breuhahn ◽  
Thomas Ruzicka
1999 ◽  
Vol 18 (6) ◽  
pp. 589-600 ◽  
Author(s):  
Hicham Zegzouti ◽  
Brian Jones ◽  
Pierre Frasse ◽  
Christel Marty ◽  
Beatrice Maitre ◽  
...  

2004 ◽  
Vol 16 (9) ◽  
pp. 238
Author(s):  
A. J. Harvey ◽  
M. Kirstein ◽  
A. Navarrete-Santos ◽  
K. L. Kind ◽  
B. Fischer ◽  
...  

Oxygen-regulated gene expression in the bovine embryo contrasts markedly with that observed in the mouse. Under low (2%) oxygen moderate changes in gene expression are observed in the bovine blastocyst, compared with 3- to 4-fold increases in the mouse. We have determined that these moderate gene expression changes are most likely regulated by Hypoxia-Inducible Factor (HIF)-2 transcription factor activity in the bovine, in the absence of HIF1, although HIF2 target genes are largely unknown. The aim of this study was to screen, by differential display RT-PCR, for putative oxygen-regulated transcripts that might confer developmental competence in blastocysts cultured under varying oxygen atmospheres post compaction. In vitro-produced bovine blastocysts were generated using standard protocols. Compact morulae were randomly allocated to treatments under either 2%, 7% or 20% oxygen for 72 h from Day 5. Blastocyst RNA was isolated using TriReagent and samples were reverse transcribed using Superscript II. cDNA was amplified using 10-mer primers in reactions containing 32Pα-labelled dCTP. Resulting bands were detected by autoradiography, excised, purified and ligated into pGEMT vectors for transformation and sequencing. Seven clones were identified as having high homology with known sequences in GenBank. Real-time PCR was undertaken to confirm oxygen-regulation using Sybr green master mix. Myotrophin mRNA was significantly increased following 2% oxygen culture, compared with 20% cultured blastocysts (P�<�0.01), as was GLUT1 (P�<�0.01). The expression of anaphase-promoting complex showed a significant association with oxygen, being higher in 2% cultured blastocysts (P�<�0.05). Acetyl-coA-acetyltransferase I, chronic myelogenous leukemia tumor antigen (CML66), cyclin I, NADH dehydrogenase subunit 2 and ribonucleotide reductase M1, genes identified using differential display, were not altered by post compaction oxygen concentration. This study has identified potentially HIF2-specific regulated genes, and supports the hypothesis that reduced oxygen concentrations post-compaction may influence bovine embryo development through oxygen-regulated changes in gene expression.


2005 ◽  
Vol 85 (2) ◽  
pp. 417-424 ◽  
Author(s):  
Can-Kui Zhang ◽  
Ping Lang ◽  
Robert C. Ebel ◽  
Fenny Dane ◽  
Narendra K Singh ◽  
...  

Citrus sp. are important commercial fruit crops throughout the world that are occasionally devastated by subfreezing temperatures. Poncirus trifoliata (maximum freeze tolerance of -26°C) is a close relative of commercial Citrus sp. (maximum freeze tolerance of -10°C) that has been used in breeding programs to develop more cold-hardy genotypes and as a rootstock to enhance freeze tolerance of the scion. Species with greater freeze tolerance vary in gene expression during cold acclimating temperatures. mRNA differential display (DDRT-PCR) and quantitative relative RT-PCR were used to study down regulation of gene expression in intact P. trifoliata exposed to a gradual cold acclimation regime to enhance our understanding of the mechanism that makes this specie so freeze tolerant. Six down-regulated genes were isolated and sequenced. These down-regulated genes showed high homology to the following known genes: chlorophyll a/b binding protein, photosystem II OEC 23, carbonic anhydrase, tumor related protein, pyrrolidone-carboxylate peptid ase and β-galactosidase. Photoprotection and the global control of gene expression related to photosynthesis appear to be important mechanisms for cold acclimation of P. trifoliata. Key words: Differential display, down-regulated genes, Poncirus trifoliata, cold acclimation and quantitative relative RT-PCR


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


1999 ◽  
Vol 20 (2) ◽  
pp. 230 ◽  
Author(s):  
Marianne Jorgensen ◽  
Maja Bévort ◽  
Thuri S. Kledal ◽  
Brian V. Hansen ◽  
Marlene Dalgaard ◽  
...  

2020 ◽  
Author(s):  
Robert Calin-Jageman ◽  
Irina Calin-Jageman ◽  
Tania Rosiles ◽  
Melissa Nguyen ◽  
Annette Garcia ◽  
...  

[[This is a Stage 1 Registered Report manuscript. The project was submitted for review to eNeuro. Upon revision and acceptance, this version of the manuscript was pre-registered on the OSF (9/11/2019, https://osf.io/fqh8j) (but due to an oversight not posted as a preprint until July 2020). A Stage 2 manuscript is now posted as a pre-print (https://psyarxiv.com/h59jv) and is under review at eNeuro. A link to the final Stage 2 manuscript will be added when available.]]There is fundamental debate about the nature of forgetting: some have argued that it represents the decay of the memory trace, others that the memory trace persists but becomes inaccessible due to retrieval failure. These different accounts of forgetting make different predictions about savings memory, the rapid re-learning of seemingly forgotten information. If forgetting is due to decay then savings requires re-encoding and should thus involve the same mechanisms as initial learning. If forgetting is due to retrieval-failure then savings should be mechanistically distinct from encoding. In this registered report we conducted a pre-registered and rigorous test between these accounts of forgetting. Specifically, we used microarray to characterize the transcriptional correlates of a new memory (1 day from training), a forgotten memory (8 days from training), and a savings memory (8 days from training but with a reminder on day 7 to evoke a long-term savings memory) for sensitization in Aplysia californica (n = 8 samples/group). We find that the transcriptional correlates of savings are [highly similar / somewhat similar / unique] relative to new (1-day-old) memories. Specifically, savings memory and a new memory share [X] of [Y] regulated transcripts, show [strong / moderate / weak] similarity in sets of regulated transcripts, and show [r] correlation in regulated gene expression, which is [substantially / somewhat / not at all] stronger than at forgetting. Overall, our results suggest that forgetting represents [decay / retrieval-failure / mixed mechanisms].


Sign in / Sign up

Export Citation Format

Share Document