Differentiation of Mouse Thymocytes in Fetal Thymus Organ Culture

2003 ◽  
pp. 37-46 ◽  
Author(s):  
Yousuke Takahama
Keyword(s):  
1994 ◽  
Vol 180 (1) ◽  
pp. 123-132 ◽  
Author(s):  
A Bárcena ◽  
A H Galy ◽  
J Punnonen ◽  
M O Muench ◽  
D Schols ◽  
...  

In this article, we report that the human fetal thymus contains CD34bright cells (< 0.01% of total thymocytes) with a phenotype that resembles that of multipotent hematopoietic progenitors in the fetal bone marrow. CD34bright thymocytes were CD33-/dull and were negative for CD38, CD2, and CD5 as well as for the lineage markers CD3, CD4, and CD8 (T cells), CD19 and CD20 (B cells), CD56 (NK cells), glycophorin (erythrocytes), and CD14 (monocytes). In addition, total CD34+ lineage negative (lin-) thymocytes contained a low number of primitive myeloid progenitor cells, thus suggesting that the different hematopoietic lineages present in the thymus may be derived from primitive hematopoietic progenitor cells seeding the thymus. To investigate whether the thymus is permissive for the development of non-T cells, human fetal organ culture (FTOC) assays were performed by microinjecting sorted CD34+lin- fetal liver cells into fragments of HLA-mismatched fetal thymus. Sequential phenotypic analysis of the FTOC-derived progeny of CD34+lin- cells indicated that the differentiation into T cells was preceded by a wave of myeloid differentiation into CD14+CD11b+CD4dull cells. Donor-derived B cells (CD19+CD20+) were also generated, which produced immunoglobulins (IgG and IgM) when cultured under appropriate conditions, as well as functional CD56+CD3- NK cells, which efficiently killed K562 target cells in cytotoxicity assays. These results demonstrate that the microinjection of fetal liver hematopoietic progenitors into fetal thymic organ fragments results in multilineage differentiation in vitro.


2002 ◽  
Vol 169 (6) ◽  
pp. 2915-2924 ◽  
Author(s):  
Aaron J. Middlebrook ◽  
Cherie Martina ◽  
Yung Chang ◽  
Ronald J. Lukas ◽  
Dominick DeLuca

Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2444-2451 ◽  
Author(s):  
Marina García-Peydró ◽  
Virginia G. de Yébenes ◽  
María L. Toribio

Abstract Notch1 activity is essential for the specification of T-lineage fate in hematopoietic progenitors. Once the T-cell lineage is specified, T-cell precursors in the thymus must choose between αβ and γδ lineages. However, the impact of Notch1 signaling on intrathymic pro-T cells has not been addressed directly. To approach this issue, we used retroviral vectors to express constitutively active Notch1 in human thymocyte progenitors positioned at successive developmental stages, and we followed their differentiation in fetal thymus organ culture (FTOC). Here we show that sustained Notch1 signaling impairs progression to the double-positive (DP) stage and efficiently diverts the earliest thymic progenitors from the main αβ T-cell pathway toward development of γδ T cells. The impact of Notch1 signaling on skewed γδ production decreases progressively along intrathymic maturation and is restricted to precursor stages upstream of the pre-T-cell receptor checkpoint. Close to and beyond that point, Notch1 is not further able to instruct γδ cell fate, but promotes an abnormal expansion of αβ-committed thymocytes. These results stress the stage-specific impact of Notch1 signaling in intrathymic differentiation and suggest that regulation of Notch1 activity at defined developmental windows is essential to control αβ versus γδ T-cell development and to avoid deregulated expansion of αβ-lineage cells. (Blood. 2003;102:2444-2451)


2007 ◽  
Vol 223 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Muriel Viau ◽  
V. Collin-Faure ◽  
P. Richaud ◽  
J.-L. Ravanat ◽  
S.M. Candéias

Sign in / Sign up

Export Citation Format

Share Document