scholarly journals Lymphoid and myeloid differentiation of fetal liver CD34+lineage- cells in human thymic organ culture.

1994 ◽  
Vol 180 (1) ◽  
pp. 123-132 ◽  
Author(s):  
A Bárcena ◽  
A H Galy ◽  
J Punnonen ◽  
M O Muench ◽  
D Schols ◽  
...  

In this article, we report that the human fetal thymus contains CD34bright cells (< 0.01% of total thymocytes) with a phenotype that resembles that of multipotent hematopoietic progenitors in the fetal bone marrow. CD34bright thymocytes were CD33-/dull and were negative for CD38, CD2, and CD5 as well as for the lineage markers CD3, CD4, and CD8 (T cells), CD19 and CD20 (B cells), CD56 (NK cells), glycophorin (erythrocytes), and CD14 (monocytes). In addition, total CD34+ lineage negative (lin-) thymocytes contained a low number of primitive myeloid progenitor cells, thus suggesting that the different hematopoietic lineages present in the thymus may be derived from primitive hematopoietic progenitor cells seeding the thymus. To investigate whether the thymus is permissive for the development of non-T cells, human fetal organ culture (FTOC) assays were performed by microinjecting sorted CD34+lin- fetal liver cells into fragments of HLA-mismatched fetal thymus. Sequential phenotypic analysis of the FTOC-derived progeny of CD34+lin- cells indicated that the differentiation into T cells was preceded by a wave of myeloid differentiation into CD14+CD11b+CD4dull cells. Donor-derived B cells (CD19+CD20+) were also generated, which produced immunoglobulins (IgG and IgM) when cultured under appropriate conditions, as well as functional CD56+CD3- NK cells, which efficiently killed K562 target cells in cytotoxicity assays. These results demonstrate that the microinjection of fetal liver hematopoietic progenitors into fetal thymic organ fragments results in multilineage differentiation in vitro.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4842-4842
Author(s):  
Burgund Kauling ◽  
Volker Huppert ◽  
Stephanie Soltenborn ◽  
Angela Hillenkötter ◽  
Mariette Mohaupt ◽  
...  

Abstract Abstract 4842 Obtaining pure and unaffected leukocyte populations is of utmost importance in diagnostic as well as research settings. So far, the isolation of functional leukocyte subpopulations from whole blood has been a time-consuming procedure, rendering the performance of downstream assays and analyses a challenging objective. We have developed a cell isolation technology that allows the purification of immune cells from human whole blood within 20 minutes. This novel technology requires a minimum of laboratory equipment. A cell isolation reagent is added to the anticoagulated blood sample and mixed briefly. While placed in a strong magnetic field, magnetically labeled non-target cells are depleted, while untouched target cells remain in the supernatant. Simultaneously, a reagent-assisted erythrocyte sedimentation phase occurs, which depletes ∼99.7 % of erythrocytes. Using this novel technology, Natural Killer cells, B cells, T cells, CD4+ T helper cells, CD8+ cytotoxic T cells and naïve B cells were isolated from 30mL of anticoagulated human whole blood. Target cells were recovered in a volume of 25–30 mL of supernatant (67% plasma, 33% Phosphate buffered saline) and average purities among white blood cells were 88.9% for NK cells, 88.2% for B cells, 97.8% for T cells, 93.0% for CD4+ cells, 78.9% for CD8+ T cells and 79.4% for naïve B cells, yields were 75.5%, 84.4%, 54.5%, 63.0%, 59.5% and 96.8% respectively (n >6 each). Red Blood cells were reduced by ∼99.7%, platelets by >99.9%. Cytotoxicity and proliferative capacity of isolated NK cells were measured in cytotoxicity assays with K562 target cells and proliferation assays with antibody loaded large magnetic beads respectively. Cytotoxicity and proliferation rate were comparable to those assessed using NK cells isolated by Ficoll density gradient separation or magnetic cell sorting (NK cell isolation kit). In vitro proliferation assays with total T cells, CD4+ T cells, CD8+ T cells or B cells revealed that proliferation rate was identical to that of target cells which were isolated by Ficoll density gradient separation and magnetic cell sorting. We furthermore compared the mRNA yields from cells isolated with either method (new technology vs. Miltenyi's isolation kits). The mRNA samples were subsequently subjected to gene expression analysis. Comparing the results obtained from samples isolated with the two different separation methods, we could not detect any significant differences in gene expression levels. These results demonstrate, that cells isolated with the novel whole blood cell isolation strategy, can be used for cell-based functional assays, as well as gene expression profiling. Additionally, overall processing time can be significantly reduced, which is highly desirable for sensitive downstream experiments. Disclosures: Kauling: Miltenyi Biotec GmbH: Employment. Huppert:Miltenyi Biotec GmbH: Employment. Soltenborn:Miltenyi Biotec GmbH: Employment. Hillenkötter:Miltenyi Biotec GmbH: Employment. Mohaupt:Miltenyi Biotec GmbH: Employment. Schmitz:Miltenyi Biotec GmbH: Employment.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3184-3184
Author(s):  
Shuro Yoshida ◽  
Fumihiko Ishikawa ◽  
Leonard D. Shultz ◽  
Noriyuki Saito ◽  
Mitsuhiro Fukata ◽  
...  

Abstract Human cord blood (CB) CD34+ cells are known to contain both long-term hematopoietic stem cells (LT-HSCs) and lineage-restricted progenitor cells. In the past, in vitro studies suggested that CD10, CD7 or CD127 (IL7Ra) could be candidate surface markers that could enrich lymphoid-restricted progenitor cells in human CB CD34+ cells (Galy A, 1995, Immunity; Hao QL, 2001, Blood; Haddad R, 2004, Blood). However, in vivo repopulating capacity of these lymphoid progenitors has not been identified due to the lack of optimal xenogeneic transplantation system supporting development of human T cells in mice. We aim to identify progenitor activity of human CB CD34+ cells expressing CD10/CD7 by using newborn NOD-scid/IL2rgKO transplant assay that can fully support the development of human B, T, and NK cells in vivo (Ishikawa F, 2005, Blood). Although LT-HSCs exist exclusively in Lin-CD34+CD38- cells, not in Lin-CD34+CD38+ cells, CD10 and CD7 expressing cells are present in Lin-CD34+CD38- cells as well as in Lin-CD34+CD38+ cells (CD10+CD7+ cells, CD10+CD7- cells, CD10-CD7+ cells, CD10-CD7- cells accounted for 4.7+/−2.7%, 10.5+/−1.9%, 7.6+/−4.4%, and 77.1+/−5.2% in Lin-CD34+CD38- CB cells, respectively). We transplanted 500–6000 purified cells from each fraction into newborn NOD-scid/IL2rgKO mice, and analyzed the differentiative capacity. CD34+CD38-CD10-CD7- cells engrafted long-term (4–6 months) in recipient mice efficiently (%hCD45+ cells in PB: 30–70%, n=5), and gave rise to all types of human lymphoid and myeloid progeny that included granulocytes, platelets, erythroid cells, B cells, T cells, and NK cells. Successful secondary reconstitution by human CD34+ cells recovered from primary recipient bone marrow suggested that self-renewing HSCs are highly enriched in CD34+CD38–CD10–CD7- cells. CD10–CD7+ cells were present more frequently in CD34+CD38+ cells rather than in CD34+CD38- cells. Transplantation of more than 5000 CD34+CD38+CD10–CD7+ cells, however, resulted in less than 0.5% human cell engraftment in the recipients. Within CD34+CD38–CD10+ cells, the expression of CD7 clearly distinguished the distinct progenitor capacity. At 8 weeks post-transplantation, more than 70% of total human CD45+ cells were T cells in the CD10+CD7+ recipients, whereas less than 30% of engrafted human CD45+ cells were T cells in the CD10+CD7– recipients. In the CD10+CD7- recipients, instead, more CD19+ B cells and HLA–DR+CD33+ cells were present in the peripheral blood, the bone marrow and the spleen. Both CD34+CD38–CD10+CD7+ and CD34+CD38–CD10+CD7- cells highly repopulate recipient thymus, suggesting that these progenitors are possible thymic immigrants. Taken together, human stem and progenitor activity can be distinguished by the expressions of CD7 and CD10 within Lin-CD34+CD38- human CB cells. Xenotransplant model using NOD-scid/IL2rgKO newborns enable us to clarify the heterogeneity of Lin-CD34+CD38- cells in CB by analyzing the in vivo lymphoid reconstitution capacity.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7517-7517
Author(s):  
Joshua W. Keegan ◽  
Frank Borriello ◽  
Stacey M. Fernandes ◽  
Jennifer R. Brown ◽  
James A. Lederer

7517 Background: Alloplex Biotherapeutics has developed a cellular therapeutic that uses ENgineered Leukocyte ImmunoSTimulatory cell lines called ENLIST cells to activate and expand populations of tumor killing effector cells from human peripheral blood mononuclear cells (PBMCs). This process leads to a 300-fold expansion of NK cells, CD8+ T cells, NKT cells, and TCRγδ T cells that are called SUPLEXA cells, which will be cryopreserved and transferred back into patients as an autologous immune cell therapy for cancer. In this study, PBMCs from CLL patients were used to generate SUPLEXA cells as a first approach to comparatively profile SUPLEXA cells from cancer patients and normal healthy volunteers (NHVs). Methods: ENLIST cell lines were engineered by expressing curated immunomodulatory proteins in the SK-MEL-2 melanoma cell line. Two million (M) PBMCs from 10 CLL patients or 2 NHVs were incubated with 0.4 M freeze/thaw killed ENLIST cells for 5 days in XVIVO-15 medium with 2% heat-inactivated human AB serum (XAB2) and then split 1:15 in XAB2 containing IL-7 and IL-15 to expand. After 9 days, SUPLEXA cells were harvested and cryopreserved. Results: Original PBMCs and matched SUPLEXA cells from each donor were thawed and characterized by mass cytometry (CyTOF) using a 47-marker antibody panel. CyTOF staining results of PBMCs from CLL patients demonstrated approximately 95% leukemia cells and few T cells, NK cells, B cells, and monocytes. CyTOF staining of SUPLEXA cells from all 10 CLL patients showed expansion of NK cells (17%), CD8 T cells (11%), and CD4 T cells (7.5%) that were similar in phenotype to SUPLEXA cells from NHVs showing high expression of granzymes and perforin that are indicative of potent tumor cell killing activity. Cancer cells in the original CLL PBMC samples were reduced to 0.78%. However, a population of non-T/non-B cells (60% ± 9.5%) was detected in SUPLEXA cells from all CLL patients that require further characterization. Next, SUPLEXA cells from CLL and NHV patients were comparatively tested for tumor cell killing activity at 2:1, 1:1, and 1:2 effector to target cell (MEL-14 melanoma cells expressing RFP) ratios. Percent killing of tumor cells by SUPLEXA cells prepared from CLL patients (77.8% ± 2.6% at 2:1) and NHVs (81.5% ± 0.3% at 2:1) were nearly identical at all effector to target ratios. Conclusions: We demonstrate for the first time that PBMCs from CLL patients can be converted into SUPLEXA cells despite low numbers of normal immune cells at baseline and the known immunologic impairment present in CLL patients. Importantly, SUPLEXA cells derived from CLL patients acquire potent tumor killing activity that is indistinguishable from SUPLEXA cells prepared from NHVs. Taken together, these findings support the feasibility of converting PBMCs from CLL patients with low percentages of NK and T cells into an autologous cellular therapy for cancer.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2625-2632 ◽  
Author(s):  
Francesco Colucci ◽  
Sandrine I. Samson ◽  
Rodney P. DeKoter ◽  
Olivier Lantz ◽  
Harinder Singh ◽  
...  

Abstract PU.1 is a member of the Ets family of transcription factors required for the development of various lymphoid and myeloid cell lineages, but its role in natural killer (NK) cell development is not known. The study shows that PU.1 is expressed in NK cells and that, on cell transfer into alymphoid Rag2/γc−/−mice, hematopoietic progenitors of PU.1−/−fetal liver cells could generate functional NK cells but not B or T cells. Nevertheless, the numbers of bone marrow NK cell precursors and splenic mature NK cells were reduced compared to controls. Moreover,PU.1−/− NK cells displayed reduced expression of the receptors for stem cell factor and interleukin (IL)-7, suggesting a nonredundant role for PU.1 in regulating the expression of these cytokine receptor genes during NK cell development.PU.1−/− NK cells also showed defective expression of inhibitory and activating members of the Ly49 family and failed to proliferate in response to IL-2 and IL-12. Thus, despite the less stringent requirement for PU.1 in NK cell development compared to B and T cells, PU.1 regulates NK cell differentiation and homeostasis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A159-A159
Author(s):  
Michael Whang ◽  
Ming-Hong Xie ◽  
Kate Jamboretz ◽  
Hadia Lemar ◽  
Chao Guo ◽  
...  

BackgroundPeripheral blood natural killer (NK) cells are mature cytotoxic innate lymphocytes possessing an inherent capacity for tumor cell killing, thus making them attractive candidates for adoptive cell therapy. These NK cells are also amenable to CRISPR and chimeric antigen receptor (CAR) genomic engineering for enhanced functions. Moreover, NK cells possess an inherent capacity for off-the-shelf therapy since they are not known to cause graft-versus-host disease, unlike T cells. Presently, approved CAR cell therapy is custom-made from each patient‘s own T cells, a process that can limit patient pool, narrow therapeutic window, and contribute to product variability. In this study, we investigate whether peripheral blood NK cells from a selected donor can be edited, engineered, and expanded sufficiently for off-the-shelf use in a wide patient population.MethodsUsing the CRISPR/Cas9 system, we knocked out CISH expression in isolated peripheral blood NK cells from 3 healthy donors. Subsequently, we expanded edited NK cells by using IL-2 and sequential stimulations using NKSTIM, a modified K562 stimulatory cell line expressing membrane-bound form of IL-15 (mbIL-15) and 4-1BBL. IL-12 and IL-18 were added twice during expansion to drive memory-like NK cell differentiation. We transduced the expanded NK cells to express engineered CD19-targeted CAR and mbIL-15 during an interval between the first and second NKSTIM pulses. We assessed NK cell cytotoxicity against Nalm6 target cells by IncuCyte.ResultsIsolated peripheral blood NK cells from 3 healthy donors were successfully edited using CRISPR/Cas9, engineered to express high levels of CAR, extensively expanded using a series of NKSTIM pulses in the presence of IL-2, and differentiated into memory-like NK cells using IL-12 and IL-18. Interestingly, NK cells from the 3 donors exhibited distinct outcomes. NK cells from one donor reached a peak expansion limit of approximately 7-million-fold before undergoing contraction whereas NK cells from two donors continued to expand over the length of the study surpassing 100-million-fold expansion, without appearing to have reached a terminal expansion limit. At the end of the study, NK cells from one donor exceeded 1-billion-fold expansion and maintained 88% cytolytic activity compared to Nkarta’s standard process control in a 72-hour IncuCyte assay.ConclusionsIn this study, we demonstrate that healthy donor-derived peripheral blood NK cells are capable of expanding over billion-fold while maintaining potency. These results provide a rationale for the development of off-the-shelf CAR NK cell therapies using NK cells from donors selected to provide optimal product characteristics.Ethics ApprovalHuman samples were collected with written informed consent by an approved vendor.


Blood ◽  
1985 ◽  
Vol 65 (3) ◽  
pp. 663-679
Author(s):  
L Levitt ◽  
TJ Kipps ◽  
EG Engleman ◽  
PL Greenberg

The efficacy of four separate methods of human bone marrow T lymphocyte depletion was assessed, and the effect of T cells and monocytes on in vitro growth of marrow (CFU-GEMM, BFU-E, and CFU-GM) and peripheral blood (BFU-E) hematopoietic progenitors was determined. Extent of T cell depletion was assessed by multiparameter fluorescent cell sorter (FACS) analysis and by functional studies. Cells staining positively by FACS analysis for one or more of three separate fluorescent pan-T cell monoclonal antibodies (MCAbs) comprised 8.4% to 9.5% of control marrow mononuclear cells (MNCs). T cells constituted 3.2% to 5.1% of marrow following single, sequential, or combination treatment with two different pan-T cell MCAbs (Leu 1 and TM1) plus complement, 1.5% to 2.2% of marrow following solid-phase immunoabsorption (“panning”), 0.2% of marrow after sheep cell rosetting, and only 0.05% of marrow after FACS selective cell sorting and gated separation. T cells made up 59% to 73% of control peripheral blood MNCs and 0.8% to 2.8% of peripheral MNCs following sheep cell rosetting plus treatment with Leu 1 MCAb and complement. Mitogen (PHA, Con A) and allogeneic MLC-induced blastogenic responses (stimulation indices, experimental/control or E/C) revealed a concordant decrement in marrow T cell function after MCAb plus complement (E/C of 3.9 to 9.0), after panning (E/C of 1.6 to 3.5) and after sheep cell rosetting (E/C of 0.7 to 1.3), compared with control marrow (E/C of 5.3 to 15.7). After T cell depletion, marrow BFU-E growth was 95% to 120% of control, CFU-GM growth was 90% to 108% of control, and CFU-GEMM growth was 89% to 111% of control. Marrow T cell and/or monocyte depletion did not alter erythropoietin-dependent BFU-E growth in the absence of Mo-conditioned medium (81% to 95% of control), and the addition of as many as 50 to 100 X 10(3) purified marrow monocytes or T cells to 10(5) autologous nonadherent T cell-depleted marrow target cells had a negligible (P greater than .1) effect on marrow BFU-E growth in vitro. Peripheral blood (PB) BFU-E/10(5) T- depleted target cells were 106% +/- 19% of expected; PB BFU-E growth was significantly diminished after monocyte depletion alone (7% +/- 6% of expected) or after monocyte plus T cell depletion (8% +/- 4% of expected).(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 108-118
Author(s):  
I.N. Hampson ◽  
L. Hampson ◽  
M. Pinkoski ◽  
M. Cross ◽  
C.M. Heyworth ◽  
...  

We have identified a gene that has a high level of mRNA expression in undifferentiated, multipotential hematopoietic cells (FDCP-Mix) and that downregulates both transcript and protein, as these cells are induced to differentiate into mature myeloid cells. Sequence analysis of this gene has identified it as a serine protease inhibitor EB22/3 (serpin 2A). Constitutive expression of serpin 2A in FDCP-Mix cells was associated with an increase in the clonogenic potential of the cells and with a delay in the appearance of fully mature cells in cultures undergoing granulocyte macrophage differentiation when compared with control cells. Serpin 2A was also found to be expressed in bone marrow-derived bipotent granulocyte macrophage progenitor cells (GM-colony forming cell [CFC]), but not in erythrocyte progenitor cells from day 15 fetal liver. Expression of serpin 2A also showed a marked up regulation during the activation of cytotoxic suppressor CD8+ T cells, with a clear lag between the appearance of transcript and detection of protein.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenxing Su ◽  
Yuqian Wei ◽  
Biao Huang ◽  
Jiang Ji

BackgroundPsoriasis is a chronic, prolonged, and recurrent skin inflammatory disease. However, the pathogenesis of psoriasis is not completely clear, thus we aimed to explore potential molecular basis of it.MethodsTwo datasets were downloaded from the Gene Expression Omnibus database. After identifying the differentially expressed genes of psoriasis skin lesion samples and healthy controls, three kinds of analyses, namely functional annotation, protein-protein interaction (PPI) network, and immune infiltration analyses, were performed.ResultsA total of 152 up-regulated genes and 38 down-regulated genes were selected for subsequent analyses. Evaluation of the PPI network identified the most important module containing 13 hub genes. Gene ontology analysis showed that the hub genes have a significant enrichment effect on positive regulation of cell migration, defense response to the other organism and epithelial cell differentiation. KEGG signaling pathway analysis showed that the hub genes were significantly enriched in chemokine signaling, Toll-like receptor signaling pathway, and IL-17 signaling pathway. Compared with the normal control sample, naive B cells, CD8+ T cells, activated memory CD4+ T cells, follicular helper T cells, gamma delta T cells, resting NK cells, monocytes, M0 macrophages, M1 macrophages, activated dendritic cells and neutrophils infiltrated more, while memory B cells, naive CD4+ T cells, regulatory T cells (Tregs), activated NK cells, resting mast cells, and eosinophils infiltrated less.ConclusionTo conclude, the hub genes and pathways identified from psoriasis lesions and normal controls along with the immune infiltration profile may provide new insights into the study of psoriasis.


1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.


Sign in / Sign up

Export Citation Format

Share Document