Gene Silencing by a DNA Vector-Based RNAi Technology

RNA Silencing ◽  
2005 ◽  
pp. 205-218 ◽  
Author(s):  
Guangchao Sui ◽  
Yang Shi
2007 ◽  
Vol 125 (2) ◽  
pp. 169-175 ◽  
Author(s):  
Xinzhong Cai ◽  
Changchun Wang ◽  
Youping Xu ◽  
Qiufang Xu ◽  
Zhong Zheng ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wen-lin Xiao ◽  
Dai-zun Zhang ◽  
Hong Xu ◽  
Cui-zhu Zhuang

The aim of this study was to investigate the effect of the 7-dehydrocholesterol reductase (Dhcr7) gene and identify signaling pathways involved in regulation of embryonic palatogenesis. The expression ofDhcr7and its protein product were examined during murine normal embryonic palatogenesis via a reverse transcription polymerase chain reaction (RT-PCR) and Western blot (WB). RNA interference (RNAi) technology was used to inhibitDhcr7expression in a palatal shelf culturein vitro. The effects of Dhcr7 on palatogenesis and palatal fusion were examined by scanning electron microscopy (SEM). The expression changes of Dhcr7, Sonic Hedgehog (Shh), and bone morphogenetic protein-2 (Bmp2) were measured by RT-PCR and WB afterDhcr7gene silencing and the addition of exogenous cholesterol. The results showed that the palatal shelf failed to complete normal development and fusion whenDhcr7expression was inhibited. The inhibitory effect study of RNAi on the development of the palatal shelf supported that cholesterol supplementation did not alter the silencing of Dhcr7. Shh and Bmp2 expressions were reduced afterDhcr7gene silencing, and administration of exogenous cholesterol did not affect Dhcr7 expression; however Shh and Bmp2 expressions increased. We conclude thatDhcr7plays a role in growth of the palatal shelf and can regulate palatogenesis through alterations in the levels of Shh and Bmp2.


2002 ◽  
Vol 99 (8) ◽  
pp. 5515-5520 ◽  
Author(s):  
G. Sui ◽  
C. Soohoo ◽  
E. B. Affar ◽  
F. Gay ◽  
Y. Shi ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12148
Author(s):  
Alejandro Hernández-Soto ◽  
Randall Chacón-Cerdas

RNAi technology is a versatile, effective, safe, and eco-friendly alternative for crop protection. There is plenty of evidence of its use through host-induced gene silencing (HIGS) and emerging evidence that spray-induced gene silencing (SIGS) techniques can work as well to control viruses, bacteria, fungi, insects, and nematodes. For SIGS, its most significant challenge is achieving stability and avoiding premature degradation of RNAi in the environment or during its absorption by the target organism. One alternative is encapsulation in liposomes, virus-like particles, polyplex nanoparticles, and bioclay, which can be obtained through the recombinant production of RNAi in vectors, transgenesis, and micro/nanoencapsulation. The materials must be safe, biodegradable, and stable in multiple chemical environments, favoring the controlled release of RNAi. Most of the current research on encapsulated RNAi focuses primarily on oral delivery to control insects by silencing essential genes. The regulation of RNAi technology focuses on risk assessment using different approaches; however, this technology has positive economic, environmental, and human health implications for its use in agriculture. The emergence of alternatives combining RNAi gene silencing with the induction of resistance in crops by elicitation and metabolic control is expected, as well as multiple silencing and biotechnological optimization of its large-scale production.


2007 ◽  
Vol 49 (12) ◽  
pp. 1726-1733 ◽  
Author(s):  
You-Ping Xu ◽  
Lu-Ping Zheng ◽  
Qiu-Fang Xu ◽  
Chang-Chun Wang ◽  
Xue-Ping Zhou ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7687
Author(s):  
Eltayb Abdellatef ◽  
Nasrein Mohamed Kamal ◽  
Hisashi Tsujimoto

Crop yield is severely affected by biotic and abiotic stresses. Plants adapt to these stresses mainly through gene expression reprogramming at the transcriptional and post-transcriptional levels. Recently, the exogenous application of double-stranded RNAs (dsRNAs) and RNA interference (RNAi) technology has emerged as a sustainable and publicly acceptable alternative to genetic transformation, hence, small RNAs (micro-RNAs and small interfering RNAs) have an important role in combating biotic and abiotic stresses in plants. RNAi limits the transcript level by either suppressing transcription (transcriptional gene silencing) or activating sequence-specific RNA degradation (post-transcriptional gene silencing). Using RNAi tools and their respective targets in abiotic stress responses in many crops is well documented. Many miRNAs families are reported in plant tolerance response or adaptation to drought, salinity, and temperature stresses. In biotic stress, the spray-induced gene silencing (SIGS) provides an intelligent method of using dsRNA as a trigger to silence target genes in pests and pathogens without producing side effects such as those caused by chemical pesticides. In this review, we focus on the potential of SIGS as the most recent application of RNAi in agriculture and point out the trends, challenges, and risks of production technologies. Additionally, we provide insights into the potential applications of exogenous RNAi against biotic stresses. We also review the current status of RNAi/miRNA tools and their respective targets on abiotic stress and the most common responsive miRNA families triggered by stress conditions in different crop species.


2021 ◽  
Vol 7 (9) ◽  
pp. 735
Author(s):  
Laura Ruiz-Jiménez ◽  
Álvaro Polonio ◽  
Alejandra Vielba-Fernández ◽  
Alejandro Pérez-García ◽  
Dolores Fernández-Ortuño

The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosylation (CNAP1048) and efflux transport (CNAP948), were identified. Functional analysis of these CNAP coding genes by dsRNA-induced gene silencing resulted in strong silencing phenotypes with large reductions in fungal growth and disease symptoms. Due to their important contributions to fungal development, the CNAP1048, CNAP10905 and CNAP30520 genes were selected as targets to conduct SIGS assays under plant growth chamber conditions. The spray application of these dsRNAs induced high levels of disease control, supporting that SIGS could be a sustainable approach to combat powdery mildew diseases.


Sign in / Sign up

Export Citation Format

Share Document