exogenous cholesterol
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 7)

H-INDEX

18
(FIVE YEARS 0)

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2605
Author(s):  
Faegheh Ghanbari ◽  
Anne-Marie Fortier ◽  
Morag Park ◽  
Anie Philip

The molecular mechanism underlying the metabolic reprogramming associated with obesity and high blood cholesterol levels is poorly understood. We previously reported that cholesterol is an endogenous ligand of the estrogen-related receptor alpha (ERRα). Using functional assays, metabolomics, and genomics, here we show that exogenous cholesterol alters the metabolic pathways in estrogen receptor-positive (ER+) and triple-negative breast cancer (TNBC) cells, and that this involves increased oxidative phosphorylation (OXPHOS) and TCA cycle intermediate levels. In addition, cholesterol augments aerobic glycolysis in TNBC cells although it remains unaltered in ER+ cells. Interestingly, cholesterol does not alter the metabolite levels of glutaminolysis, one-carbon metabolism, or the pentose phosphate pathway, but increases the NADPH levels and cellular proliferation, in both cell types. Importantly, we show that the above cholesterol-induced modulations of the metabolic pathways in breast cancer cells are mediated via ERRα. Furthermore, analysis of the ERRα metabolic gene signature of basal-like breast tumours of overweight/obese versus lean patients, using the GEO database, shows that obesity may modulate ERRα gene signature in a manner consistent with our in vitro findings with exogenous cholesterol. Given the close link between high cholesterol levels and obesity, our findings provide a mechanistic explanation for the association between cholesterol/obesity and metabolic reprogramming in breast cancer patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yong-Xu Cai ◽  
Bao-Long Zhang ◽  
Miao Yu ◽  
Yan-Chao Yang ◽  
Xue Ao ◽  
...  

We have shown that cholesterol regulates the activity of ion channels in mouse cortical collecting duct (CCD) mpkCCDc14 cells and that the transient receptor potential melastatin 4 (TRPM4) channel is expressed in these cells. However, whether TRPM4 channel is regulated by cholesterol remains unclear. Here, we performed inside-out patch-clamp experiments and found that inhibition of cholesterol biosynthesis by lovastatin significantly decreased, whereas enrichment of cholesterol with exogenous cholesterol significantly increased, TRPM4 channel open probability (Po) by regulating its sensitivity to Ca2+ in mpkCCDc14 cells. In addition, inside-out patch-clamp data show that acute depletion of cholesterol in the membrane inner leaflet by methyl-β-cyclodextrin (MβCD) significantly reduced TRPM4 Po, which was reversed by exogenous cholesterol. Moreover, immunofluorescence microscopy, Western blot, cell-surface biotinylation, and patch clamp analysis show that neither inhibition of intracellular cholesterol biosynthesis with lovastatin nor application of exogenous cholesterol had effect on TRPM4 channel protein abundance in the plasma membrane of mpkCCDc14 cells. Sucrose density gradient centrifugation studies demonstrate that TRPM4 was mainly located in cholesterol-rich lipid rafts. Lipid-protein overlay experiments show that TRPM4 directly interacted with several anionic phospholipids, including PI(4,5)P2. Depletion of PI(4,5)P2 with either wortmannin or PGE2 abrogated the stimulatory effects of exogenous cholesterol on TRPM4 activity, whereas exogenous PI(4,5)P2 (diC8-PI(4,5)P2, a water-soluble analog) increased the effects. These results suggest that cholesterol stimulates TRPM4 via a PI(4,5)P2-dependent mechanism.


2020 ◽  
Vol 55 (6) ◽  
pp. 726-736
Author(s):  
Jeetendra Singh Rajoriya ◽  
Jai Kishan Prasad ◽  
Snehal Shalik Ramteke ◽  
Ponraj Perumal ◽  
Arun Kumar De ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Kathleen O’Neill

Abstract Triple Negative Breast Cancer (TNBC) is an aggressive subtype of cancer with poor prognosis due to high metastatic potential and lack of targeted therapies. Normal epithelial cells express the microRNA-200c (miR-200c), a potent suppressor of epithelial-to-mesenchymal transition (EMT). However, miR-200c is silenced or lost in TNBC, allowing a de-differentiated, non-epithelial phenotype and aberrant expression of genes conferring invasive and chemoresistant characteristics. Recent literature has demonstrated that EMT promotes altered tumor cell metabolism, creating novel vulnerabilities that can be exploited therapeutically. In addition to driving global metabolic changes, miR-200c-induced reversal of EMT alters key cholesterol metabolism genes that support the uptake of dietary cholesterol from the bloodstream. Intracellular cholesterol homeostasis is critical for cell survival and is carefully regulated, but how these homeostatic mechanisms adapt during tumor progression is poorly understood. Based on preliminary data, I hypothesize that TNBCs depend on exogenous cholesterol uptake and availability to maintain cell viability and an invasive phenotype. This work aims to identify novel cholesterol-related targets in breast cancer and delineate mechanisms regulating cholesterol homeostasis in normal and cancer physiology.Restoration of miR-200c in TNBC leads to alteration of the cholesterol uptake components low- and very-low-density-lipoprotein receptors LDLR and VLDLR, through direct and indirect mechanisms previously unexplored in cancer. miR-200c further inhibits Niemann-Pick Type C (NPC1), a lysosomal protein necessary for utilization of exogenous cholesterol. Interestingly, expression of NPC1 in TNBC correlates with a unique inability of cells to proliferate in the absence of exogenous LDL supply, suggesting defects in de novo cholesterol biosynthesis. Further, NPC1 inhibition leads to cell death in TNBC but not more epithelial-like breast cancers. Whether this cell death is due to disruption in critical cholesterol supply or due to defective lysosome dysfunction is currently being investigated. Overall, this work suggests a role of NPC1 in cancer cell metastasis that has not been previously explored, and identifies cholesterol uptake as a targetable dependency in TNBC.


2019 ◽  
Vol 67 (2) ◽  
pp. 209-222
Author(s):  
Sebastián R. Najle ◽  
Josefina Hernández ◽  
Eduard Ocaña‐Pallarès ◽  
Nicolás García Siburu ◽  
Alejandro D. Nusblat ◽  
...  

2018 ◽  
Vol 29 (10) ◽  
pp. 1238-1257 ◽  
Author(s):  
Syed Saad Hussain ◽  
Megan T. Harris ◽  
Alex J. B. Kreutzberger ◽  
Candice M. Inouye ◽  
Catherine A. Doyle ◽  
...  

In pancreatic β-cells, insulin granule membranes are enriched in cholesterol and are both recycled and newly generated. Cholesterol’s role in supporting granule membrane formation and function is poorly understood. ATP binding cassette transporters ABCG1 and ABCA1 regulate intracellular cholesterol and are important for insulin secretion. RNAi inter­ference–induced depletion in cultured pancreatic β-cells shows that ABCG1 is needed to stabilize newly made insulin granules against lysosomal degradation; ABCA1 is also involved but to a lesser extent. Both transporters are also required for optimum glucose-stimulated insulin secretion, likely via complementary roles. Exogenous cholesterol addition rescues knockdown-induced granule loss (ABCG1) and reduced secretion (both transporters). Another cholesterol transport protein, oxysterol binding protein (OSBP), appears to act proximally as a source of endogenous cholesterol for granule formation. Its knockdown caused similar defective stability of young granules and glucose-stimulated insulin secretion, neither of which were rescued with exogenous cholesterol. Dual knockdowns of OSBP and ABC transporters support their serial function in supplying and concentrating cholesterol for granule formation. OSBP knockdown also decreased proinsulin synthesis consistent with a proximal endoplasmic reticulum defect. Thus, membrane cholesterol distribution contributes to insulin homeostasis at production, packaging, and export levels through the actions of OSBP and ABCs G1 and A1.


2016 ◽  
Vol 12 (12) ◽  
pp. e1006089 ◽  
Author(s):  
Jeni Bolaños ◽  
Abigail Betanzos ◽  
Rosario Javier-Reyna ◽  
Guillermina García- Rivera ◽  
Miriam Huerta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document