scholarly journals Gene Mining for Conserved, Non-Annotated Proteins of Podosphaera xanthii Identifies Novel Target Candidates for Controlling Powdery Mildews by Spray-Induced Gene Silencing

2021 ◽  
Vol 7 (9) ◽  
pp. 735
Author(s):  
Laura Ruiz-Jiménez ◽  
Álvaro Polonio ◽  
Alejandra Vielba-Fernández ◽  
Alejandro Pérez-García ◽  
Dolores Fernández-Ortuño

The powdery mildew fungus Podosphaera xanthii is one of the most important limiting factors for cucurbit production worldwide. Despite the significant efforts made by breeding and chemical companies, effective control of this pathogen remains elusive to growers. In this work, we examined the suitability of RNAi technology called spray-induced gene silencing (SIGS) for controlling cucurbit powdery mildew. Using leaf disc and cotyledon infiltration assays, we tested the efficacy of dsRNA applications to induce gene silencing in P. xanthii. Furthermore, to identify new target candidate genes, we analyzed sixty conserved and non-annotated proteins (CNAPs) deduced from the P. xanthii transcriptome in silico. Six proteins presumably involved in essential functions, specifically respiration (CNAP8878, CNAP9066, CNAP10905 and CNAP30520), glycosylation (CNAP1048) and efflux transport (CNAP948), were identified. Functional analysis of these CNAP coding genes by dsRNA-induced gene silencing resulted in strong silencing phenotypes with large reductions in fungal growth and disease symptoms. Due to their important contributions to fungal development, the CNAP1048, CNAP10905 and CNAP30520 genes were selected as targets to conduct SIGS assays under plant growth chamber conditions. The spray application of these dsRNAs induced high levels of disease control, supporting that SIGS could be a sustainable approach to combat powdery mildew diseases.

2010 ◽  
Vol 23 (9) ◽  
pp. 1217-1227 ◽  
Author(s):  
Ruth Eichmann ◽  
Melanie Bischof ◽  
Corina Weis ◽  
Jane Shaw ◽  
Christophe Lacomme ◽  
...  

BAX INHIBITOR-1 (BI-1) is one of the few proteins known to have cross-kingdom conserved functions in negative control of programmed cell death. Additionally, barley BI-1 (HvBI-1) suppresses defense responses and basal resistance to the powdery mildew fungus Blumeria graminis f. sp. hordei and enhances resistance to cell death–provoking fungi when overexpressed in barley. Downregulation of HvBI-1 by transient-induced gene silencing or virus-induced gene silencing limited susceptibility to B. graminis f. sp. hordei, suggesting that HvBI-1 is a susceptibility factor toward powdery mildew. Transient silencing of BI-1 did not limit supersusceptibility induced by overexpression of MLO. Transgenic barley plants harboring an HvBI-1 RNA interference (RNAi) construct displayed lower levels of HvBI-1 transcripts and were less susceptible to powdery mildew than wild-type plants. At the cellular level, HvBI-1 RNAi plants had enhanced resistance to penetration by B. graminis f. sp. hordei. These data support a function of BI-1 in modulating cell-wall-associated defense and in establishing full compatibility of B. graminis f. sp. hordei with barley.


2018 ◽  
Vol 19 (3) ◽  
pp. 220-221 ◽  
Author(s):  
Anthony P. Keinath ◽  
Gabriel Rennberger ◽  
Chandrasekar S. Kousik

Resistance to boscalid, one of the older succinate-dehydrogenase inhibitors (SHDI) in Fungicide Resistance Action Committee (FRAC) code 7, was detected in Podosphaera xanthii, the cucurbit powdery mildew fungus, in South Carolina in July 2017. Resistance to the field rate (682 ppm) of boscalid was confirmed in greenhouse experiments and laboratory bioassays conducted on summer squash plants and cotyledons, respectively, that had been treated with a range of boscalid concentrations. This report is the first documentation of resistance to boscalid in P. xanthii in the southern United States.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1073-1073 ◽  
Author(s):  
J. A. Torés ◽  
J. M. Sánchez-Pulido ◽  
F. López-Ruiz ◽  
A. de Vicente ◽  
A. Pérez-García

A new race of cucurbit powdery mildew was observed for the first time on melon (Cucumis melo) in three research greenhouses in the Axarquia area of southern Spain during the spring of 2008. Fungal growth appeared as white powdery colonies initially restricted to the upper leaf surfaces. Morphological characteristics of colonies, conidiophores, conidia, germ tubes, and appressoria indicated that the powdery mildew fungus was Podosphaera fusca (also known as P. xanthii) (3), a fungal pathogen extensively reported in the area (1). However, the fungus developed on plants of melon cv. PMR 6, which is resistant to races 1 and 2 of P. fusca, suggesting that the fungus could belong to race 3, a race of P. fusca not yet reported in Spain. Race determination was carried out by inoculating the third true leaf of a set of differential melon genotypes that were maintained in a greenhouse. Symptoms and colonization observed on cvs. Rochet, PMR 45, PMR 6, and Edisto 47 indicated that the isolates belonged to race 3-5 of P. fusca. Fungal strains of races 1, 2, and 5 of P. fusca (all present in Spain) were used as controls. Pathotype designation was determined by inoculating different cucurbit genera and species (2). In addition to melon, the isolates were pathogenic on zucchini (Cucurbita pepo) cv. Diamant F1, but failed to infect cucumber (C. sativus) cv. Marketer and watermelon (Citrullus lanatus) cv. Sugar Baby; therefore, the isolates were pathotype BC (2). Races 1, 2, 4, and 5 of P. fusca have been previously reported in the area (1). The occurrence of race 3-5 represents another challenge in the management of cucurbit powdery mildew in Spain. References: (1) D. del Pino et al. Phytoparasitica 30:459, 2002. (2) E. Křístková et al. Sci. Hortic. 99:257, 2004. (3) A. Pérez-García et al. Mol. Plant Pathol. 10:153, 2009.


2021 ◽  
Author(s):  
Paul Melloy ◽  
Emerson Medeiros del Ponte ◽  
Adam H. Sparks

Abstract Powdery mildew (PM), caused by two fungal species, Podosphaera xanthii and Erysiphe vignae, is a yield limiting foliar disease commonly found in mungbean (Vigna radiata) cropping areas of eastern region of Australia. Effective control of PM afflicting mungbeans relies largely on fungicide applications, mainly of the triazole group. Uncertainty in the current fungicide spray schedule recommendations, which advise commencing with a spray at the first sign of PM, prompted this study to evaluate PM severity and crop yield data obtained from fungicide trials which tested spray schedules starting before (Early) or after (Late) first signs, applied singly or combined with a follow-up spray. A meta-analytic approach was employed to obtain estimates of the yield and PM severity difference between plots sprayed with specific triazole-based sprays schedules and untreated plots. From 26 trials, 15 and 14 met the criteria for inclusion in the yield and PM severity analysis respectively. The schedule with the first spray starting at first sign with a follow-up spray 14 days later, resulted in significantly lower disease severity compared to all other schedules, however, the yield protected was only numerically higher and not statistically different compared to: single-spray at first sign, single-spray Late or two-spray starting Late. While PM severity was lower in the Early sprayed plots compared to untreated plots, yield did not differ. These findings support the current recommendations and provide evidence that the first spray could be delayed up to a week and save an additional spray that may be unnecessary, thus reducing direct fungicide costs as well as indirect costs due to fungicide resistance.


2013 ◽  
Vol 26 (6) ◽  
pp. 633-642 ◽  
Author(s):  
Clara Pliego ◽  
Daniela Nowara ◽  
Giulia Bonciani ◽  
Dana M. Gheorghe ◽  
Ruo Xu ◽  
...  

Obligate biotrophic pathogens of plants must circumvent or counteract defenses to guarantee accommodation inside the host. To do so, they secrete a variety of effectors that regulate host immunity and facilitate the establishment of pathogen feeding structures called haustoria. The barley powdery mildew fungus Blumeria graminis f. sp. hordei produces a large number of proteins predicted to be secreted from haustoria. Fifty of these Blumeria effector candidates (BEC) were screened by host-induced gene silencing (HIGS), and eight were identified that contribute to infection. One shows similarity to β-1,3 glucosyltransferases, one to metallo-proteases, and two to microbial secreted ribonucleases; the remainder have no similarity to proteins of known function. Transcript abundance of all eight BEC increases dramatically in the early stages of infection and establishment of haustoria, consistent with a role in that process. Complementation analysis using silencing-insensitive synthetic cDNAs demonstrated that the ribonuclease-like BEC 1011 and 1054 are bona fide effectors that function within the plant cell. BEC1011 specifically interferes with pathogen-induced host cell death. Both are part of a gene superfamily unique to the powdery mildew fungi. Structural modeling was consistent, with BEC1054 adopting a ribonuclease-like fold, a scaffold not previously associated with effector function.


2021 ◽  
Vol 60 (1) ◽  
pp. 37-49
Author(s):  
Diána SERESS ◽  
Gábor M. KOVÁCS ◽  
Orsolya MOLNÁR ◽  
Márk Z. NÉMETH

Papaya (Carica papaya L.) is an important fruit crop in many tropical and subtropical countries. Powdery mildew commonly affects this host, causing premature leaf loss, reduced yields and poor fruit quality. At least fifteen different fungi have been identified as the causal agents of papaya powdery mildew. Powdery mildew symptoms were detected on potted papaya plants growing in two locations in Hungary. This study aimed to identify the causal agents. Morphology of powdery mildew samples was examined, and sequences of two loci were used for molecular taxonomic identifications. Only anamophs were detected in all samples, and four morphological types were distinguished. Most samples had Pseudoidium anamorphs, while some were of the Fibroidium anamorph. Based on morphology and molecular taxonomy, the Fibroidium anamorph  was identified as Podosphaera xanthii. The Pseudoidium anamorphs corresponded to three different Erysiphe species: E. cruciferarum, E. necator and an unidentified Erysiphe sp., for which molecular phylogenetic analyses showed it belonged to an unresolved species complex of E. malvae, E. heraclei and E. betae. Infectivity of P. xanthii and E. necator on papaya was verified with cross inoculations. A review of previous records of powdery mildew fungi infecting papaya is also provided. Podosphaera xanthii was known to infect, and E. cruciferarum was suspected to infect Carica papaya, while E. necator was recorded on this host only once previously. No powdery mildew fungus belonging to the E. malvae/E. heraclei/E. betae species complex is known to infect papaya or any other plants in the Caricaceae, so the unidentified Erysiphe sp. is a new record on papaya and the Caricaceae. This study indicates host range expansion of this powdery mildew fungus onto papaya.


Plant Disease ◽  
2021 ◽  
Author(s):  
Irum Mukhtar ◽  
Ruiting Li ◽  
IBATSAM KHOKHAR ◽  
Ruanni Chen ◽  
Yunying Cheng ◽  
...  

Cuphea hyssopifolia (Mexican heather) is a popular evergreen perennial shrub used for ornamental and medicinal purposes. Due to its high ornamental value, it is often used as a ground cover in parks and gardens in China. During February and March 2019 & 2020, powdery mildew was observed on C. hyssopifolia in the districts of Minhou and Jinshan of Fuzhou, China. Disease incidence was 70% but of low severity with only a few older leaves showing yellowing and wilting. Sparse irregular patches of white superficial powdery mildew observed on both sides of mature and young leaves. The powdery mildew fungal appressoria that occurred on epigenous hyphae, were indistinct to nipple-shaped, hyaline, and smooth. Conidiophores were erect, smooth, 80 to 210 × 10 to 12 µm, and produced two to eight crenate-shaped conidia in chains. Foot-cells of conidiophores were straight, cylindric, and 30 to 65 × 10 to12 µm. Conidia were hyaline, smooth, ellipsoid-ovoid to barrel-shaped, 25 to 38 × 16 to 20 µm with distinct fibrosin bodies. Germ tubes were simple to forked and produced from the lateral position of the germinating conidia. No chasmothecia were observed on the surface of infected leaves. Based on the morphology of the imperfect state, the powdery mildew fungus was identified as Podosphaera xanthii (Castagne) U. Braun & N. Shishkoff (Braun and Cook 2012). To confirm fungal identification, total DNA was extracted (Mukhtar et al., 2018) directly from epiphytic mycelia on infected leaves collected from both districts. Internal transcribed spacer (ITS) regions and the partial large subunit (LSU) rDNA were amplified using primers ITS1/ITS4 and LSU1/LSU2 (Scholin et al. 1994, White et al. 1990), respectively. The sequences were deposited in GenBank (ITS: MW692364, MW692365; LSU: MW699924, MW699925). The ITS and LSU sequences were 99 to 100 % identical to those of P. xanthii in GenBank, (ITS: MT568609, MT472035, MT250855, and AB462800; LSU: AB936276, JX896687, AB936277, and AB936274). Koch’s postulates were completed by gently pressing diseased leaves onto leaves of five healthy potted C. hyssopifolia plants that were held in a greenhouse at 24 to 30°C without humidity control. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 to 10 days, whereas the controls remained symptomless. The morphology of the fungus on the inoculated leaves was identical to that observed on the originally diseased leaves. Previously, Podosphaera sp. has been reported on C. rosea in the United Kingdom (Beales & Cook 2008) and P. xanthii on C. hyssopifolia in Taiwan (Yeh et al. 2021). To our knowledge, this is the first report of powdery mildew caused by P. xanthii on C. hyssopifolia in mainland China. Our field observations suggest that the P. xanthii infections would be a potential threat to the health of C. hyssopifolia in China. References: Beales, P. A., and Cook, R. T. A. 2008. Plant Pathol. 57:778. Braun, U., Cook, R. T. A. 2012. The Taxonomic Manual of the Erysiphales (Powdery Mildews). CBS Biodiversity Series 11: CBS. Utrecht, The Netherlands. Mukhtar, I., et al. 2018. Sydowia.70:155. Scholin, C. A., et al. 1994. J. Phycol. 30:999. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Yeh, Y. W., et al. 2021. Trop. Plant Pathol. 46:44.


2020 ◽  
Vol 21 (4) ◽  
pp. 272-277
Author(s):  
Mohammad Babadoost ◽  
Salisu Sulley ◽  
Yiwen Xiang

This study was conducted to evaluate the sensitivity of cucurbit powdery mildew fungus (Podosphaera xanthii) to major fungicides used for managing this pathogen in the Midwestern United States. Fungicides azoxystrobin from the quinone outside inhibitors group, cyflufenamid from the phenylacetamide group, penthiopyrad from the succinate dehydrogenase inhibitors group, quinoxyfen from the quinolines group, and triflumizole from the demethylation inhibitors group were tested for their effectiveness for preventing infection of cucurbits by P. xanthii. In 2015 and 2016, 37 isolates of P. xanthii were evaluated for their sensitivity to azoxystrobin (Quadris 2.08SC), cyflufenamid (Torino 0.85SC), penthiopyrad (Fontelis 1.67SC), and triflumizole (Procure 480SC) on cucumber ‘Bush Crop’ cotyledon leaves. The number of isolates sensitive to tested concentrations of Quadris 2.08SC, Torino 0.85SC, Fontelis 1.67SC, and Procure 480SC was 8 (22%), 21 (57%), 20 (54%), and 23 (62%), respectively. During 2015 to 2018, Quadris 2.08SC, Torino 0.85SC, Fontelis 1.67SC, quinoxyfen (Quintec 250SC), and Procure 480SC were tested for their effectiveness for managing powdery mildew on pumpkin ‘Howden’ in the field. The results showed that powdery mildew was effectively managed in the plots treated with Procure 480SC and Quintec 250SC. However, management of the disease was less successful in the plots treated with Quadris 2.08SC, Torino 0.85SC, and Fontelis 1.67SC.


HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 530-536 ◽  
Author(s):  
Kaori Itagaki ◽  
Toshio Shibuya ◽  
Motoaki Tojo ◽  
Ryosuke Endo ◽  
Yoshiaki Kitaya

The development of powdery mildew fungus (Podosphaera xanthii) is suppressed on cucumber (Cucumis sativus L.) seedlings acclimatized to higher red-to-far-red ratio (R:FR) than natural R:FR (≈1.2), but its early development and any limiting factors are still unclear. The present study evaluated conidial germination, initial invasion, and subsequent development of P. xanthii on cucumber seedlings raised under light-emitting diode (LED) lights with R:FRs of 1.2, 5.0, or 10. There were no differences in conidial germination or initial invasion between the treatments, so there was no effect of acclimatization to R:FR on either. But, the development of hyphae, hyphal cells, and haustoria after inoculation were suppressed on seedlings acclimatized to higher R:FR. Because differences occurred only after the initial invasion, nonstructural properties of the host leaves may have affected conidial development. Higher R:FR also suppressed conidial development under natural light filtered through a photo-selective film, which absorbs near-infrared (NIR)-light. However, this effect was reduced when the plants were moved to natural R:FR after inoculation, possibly because of reacclimatization of the seedlings.


Sign in / Sign up

Export Citation Format

Share Document